
SUBJECT and GRADE	MATHEMATICS Gr 11	
TERM 1	Week 5	
TOPIC	EUCLIDEAN GEOMETRY-LESSON 1	
AIMS OF LESSON	State and prove the theorems for circle geometry.	
	• The line drawn perpendicular from the centre of a circle to a chord bisects the chord.	
	• The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.	
RESOURCES		
Paper based resources	Digital resources	
Go to the chapter in your	Chord in a circle	
textbook on Circle	https://www.youtube.com/watch?v=J06Swxrvfkw	
Geometry.	The perpendicular line from the centre of a circle bisects the chord and inverse <u>https://www.youtube.com/watch?v=gu_rGEf9Z2U</u> <u>https://www.youtube.com/watch?v=LOAe8vbxbp0</u> <u>https://www.youtube.com/watch?v=XmkhPLFTh8Y</u> The perpendicular bisector line to the chord passes through the centre of the circle <u>https://www.youtube.com/watch?v=y5RPFTUj3xA</u> Example <u>https://www.youtube.com/watch?v=ma0qXCyxiQo</u> tion to Circle Geometry:	

UCTION: Introduction to Circle Geometry:

Euclidean geometry, the study of plane and solid figures on the basis of axioms and theorems • employed by the Greek mathematician Euclid (300 BC).

BASIC CIRCLE TERMINOLOGY

Radius:

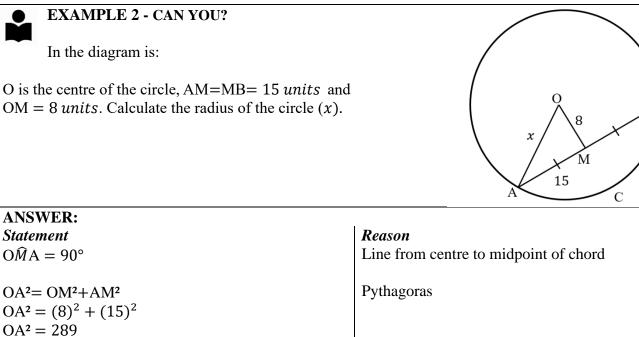
A line from the center to any point on the Circumference of the circle.

Diameter:

A line passing through the center of the circle. It is double the length of the radius.

Chord: A line with end-points on the circumference.

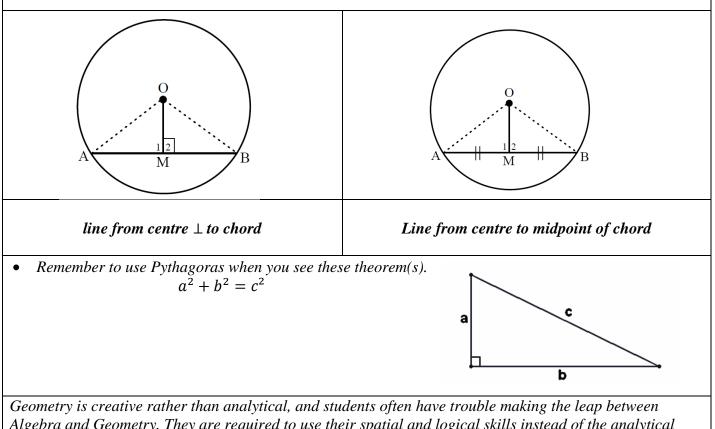
Secant:


A line passing through two points on the circle.

Tangent:

A line touching the circle at only one point.

CONCEPTS AN	D SKILLS		
THEOREM 1 The line drawn perpendicular from the centre of a circle to a chord bisects the chord.		CONVERSE THEOREM 1 The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.	
	A M B	$A \xrightarrow{O} \\ A \xrightarrow{I \\ M} \\ B$	
	If $OM \perp AB$ then $AM = MB$	If $AM = MB$ then $OM \perp AB$	
Acceptable REASON when you use the Theorem in the exam:	line from centre \perp to chord	Line from centre to midpoint of chord	
PROOF OF THEOREMS	Given: Circle with centre O with OM \perp AB.	Given: Circle with centre O. M is a point on chord AB such that AM = MB.	
	What to prove: AM = MB	What to prove: OM ⊥ AB	
	Construction: Join OA and OB	Construction: Join OA and OB	
	Proof: In \triangle OAM and \triangle OBM:	Proof: In \triangle OAM and \triangle OBM:	
	(i) $OA = OB$ radii(ii) $\widehat{M_1} = \widehat{M_2} = 90^\circ$ given(iii) $OM = OM$ common $\therefore \Delta OAM \equiv \Delta OBM$ (RHS)	(i) $OA = OB$ radii(ii) $AM = BM$ given(iii) $OM = OM$ common $\therefore \Delta OAM \equiv \Delta OBM$ (SSS)	
	$\therefore AM = MB$	$\therefore \ \widehat{M_1} = \widehat{M}_2 = 90^\circ \qquad \angle s \text{ on straight line}$	



OA = 17 = radiu	S		
	MIND ACTION SERIES	CLASSROOM	VIA AFRICA
ACTIVITIES/ ASSESSMENT	(May 2012 Issue)	MATHEMATICS p 256	Chapter 8
	Chapter 8 p 214 Excercise 1	Exercise 10.1	p 209 Exercise 1

В

CONSOLIDATION

- *Know and understand the wording of the theorem(s).*
- *Learn the correct way of writing the reason for the Theorem(s)*

Algebra and Geometry. They are required to use their spatial and logical skills instead of the analytical skills they were accustomed to using in Algebra. With enough practice **YOU CAN DO IT**!

VALUES

EUCLID

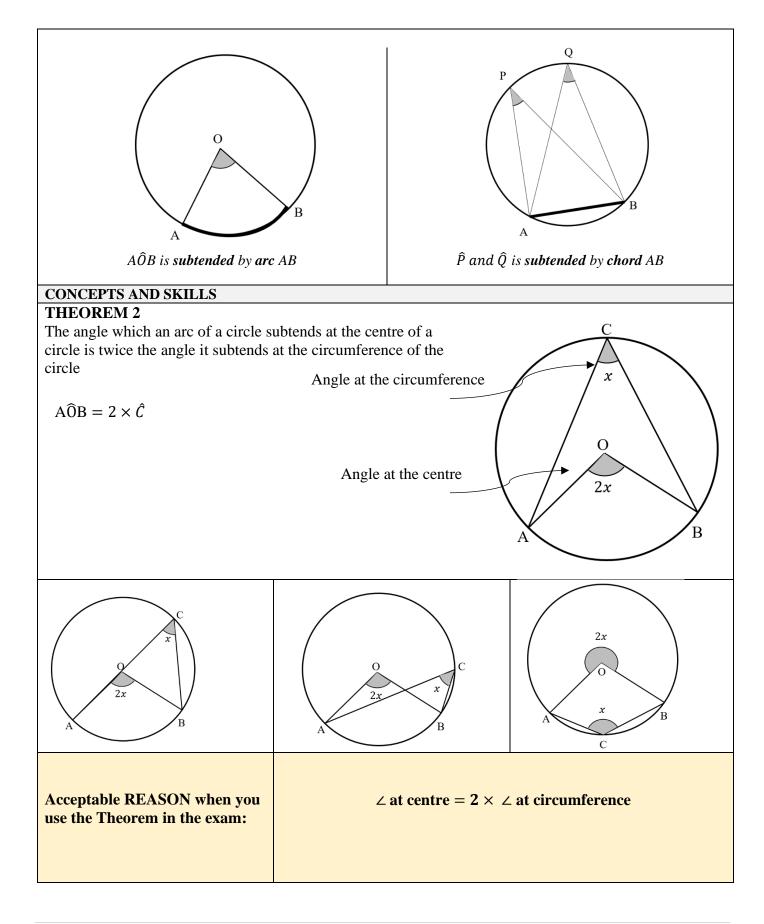
- Born 325 B.C.
- Greek Mathematician and father of Euclidean Geometry.
- Developed mathematical proof techniques that we know today.

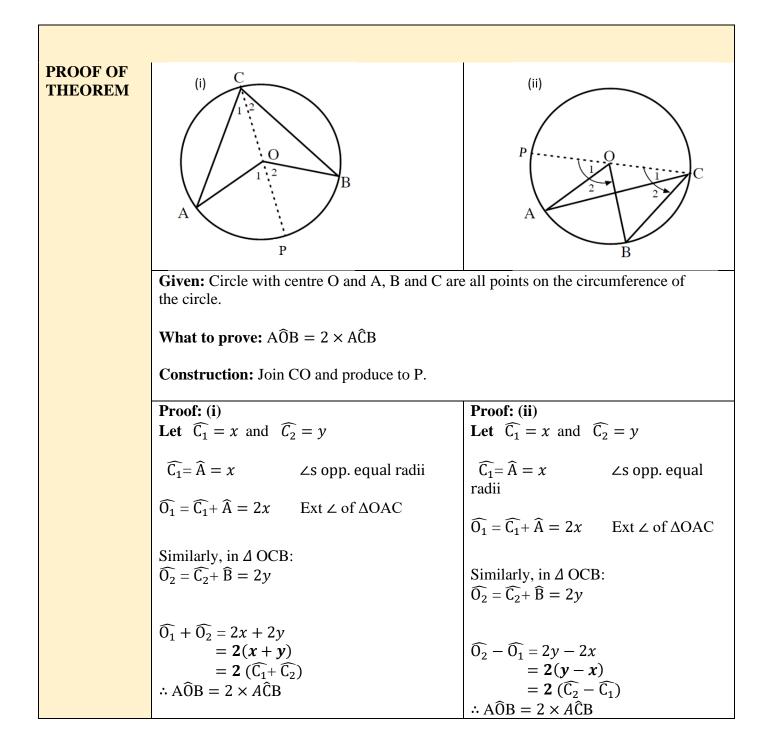
SUBJECT	MATHEMATICS Gr 11		
and GRADE			
TERM 1	Week 5		
TOPIC	EUCLIDEAN GEOMETR	RY-LESSON 2	
AIMS OF	State and prove the theorem	s for circle geometry.	
LESSON	In this lesson we will look at TWO theorems regarding the ANGLE AT THE		
	CENTRE of the circle:		
	• The angle at the centre is twice the angle at the circumference.		
	• The angle in a semicircle is a right angle.		
	As well as TWO theorems regarding angles on the circumference subtended by the SAME OR EQUAL CHORDS :		
	• Angles in the same segment are equal.		
	• Equal chords subtend equal angles at the circumference		
RESOURCES	Paper based resources	Digital resources	
	Go to the chapter in your textbook on Circle Geometry.	 Angle at the Centre is twice the angle at the circumference: <u>https://www.youtube.com/watch?v=y7-yT5qUtN0</u> <u>https://www.youtube.com/watch?v=Y5VAApqtIZY</u> 	
		 Angles in the same segment: <u>https://www.youtube.com/watch?v=vPntRCGkZCo</u> <u>https://www.youtube.com/watch?v=BDqELk2xCPU</u> Angle in semi circle <u>https://www.youtube.com/watch?v=oT7arIHd0D8</u> <u>https://www.youtube.com/watch?v=oT7arIHd0D8</u> 	
INTRODUCTIO		• General <u>https://www.youtube.com/watch?v=BDqELk2xCPU</u> <u>https://www.youtube.com/watch?v=V711BEb06ck&t=12s</u>	

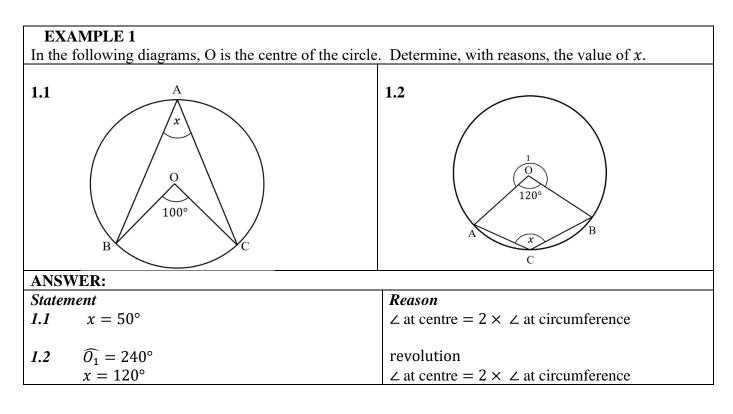
INTRODUCTION

BASIC CIRCLE TERMINOLOGY

- **Semicircle:** half of a circle; the arc from one end of a diameter to the other.
- **Segment** of a circle can be defined as a region bounded by a chord and a corresponding arc lying between the chord's endpoints.
- **Subtended**: In geometry, an angle is subtended by an arc, line segment or any other section of a curve when its two rays pass through the endpoints of that arc, line segment or curve section.

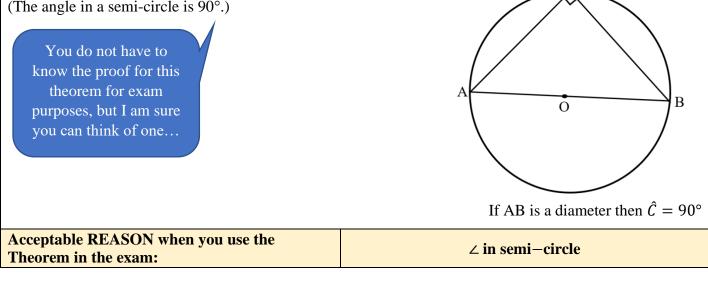

Р


Major segment


Minor segment

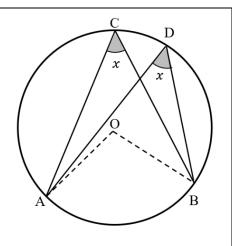
Č

А



EXAMPLE 2 - CAN YOU? In the following diagrams, O is the centre of the circle. Determine, with reasons, the values of x and y. В 2.1 2.2 x С 60 150D **ANSWER:** Statement Reason 2.1 $x = 120^{\circ}$ \angle at centre = 2 × \angle at circumference $x = 75^{\circ}$ 2.2 \angle at centre = 2 × \angle at circumference $\widehat{O_2} = 210^{\circ}$ revolution $y = 105^{\circ}$ \angle at centre = 2 × \angle at circumference

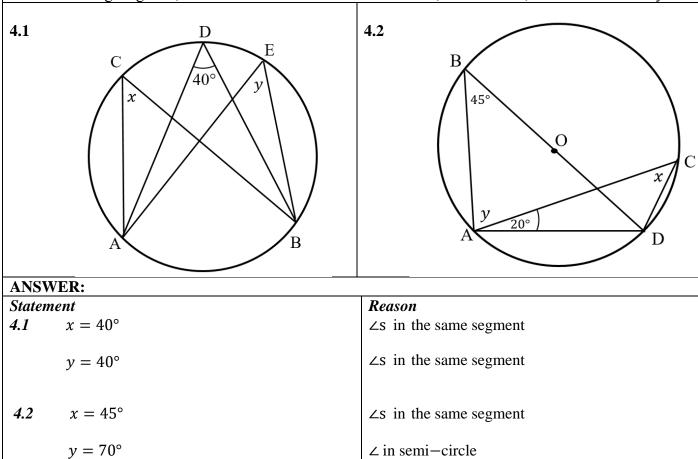
THEOREM 3

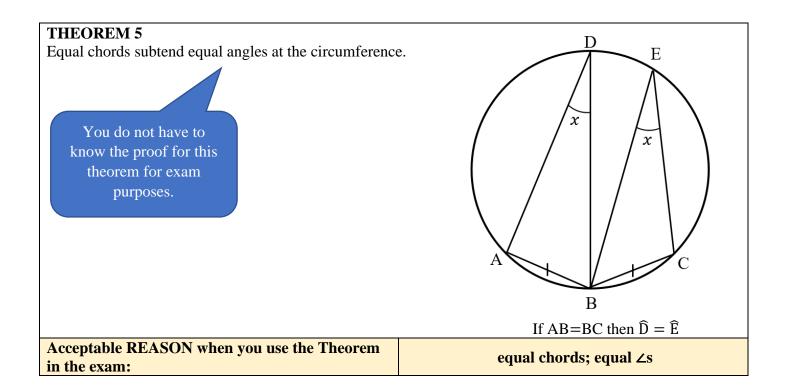

The angle subtended at the circle by a diameter is a right angle. (The angle in a semi-circle is 90° .)

THEOREM 4

An arc or chord of a circle subtends equal angles at the circumference of the circle. (angles in the same segment of the circle are equal if subtended by the same arc / chord)

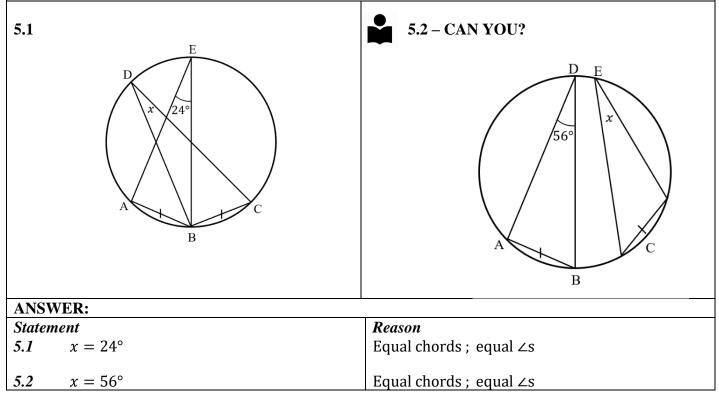
You do not have to know the proof for this theorem for exam purposes, but I am sure you can think of one...


The angles on the circumference $\hat{C} = \hat{D}$ because both are subtended by arc AB.


Acceptable REASON when you use the	
Theorem in the exam:	$\angle s$ in the same segment

EXAMPLE 3 In the following diagrams, O is the centre of the circle	. Determine, with reasons, the value of x and y .
3.1	3.2
ANSWER: Statement	Reason
$3.1 \qquad x = 35^{\circ}$	$\angle s$ in the same segment
$y = 20^{\circ}$	$\angle s$ in the same segment
$3.2 \qquad x = 70^{\circ}$	∠ in semi−circle
$y = 20^{\circ}$	∠ s opposite equal radii

EXAMPLE 4 – CAN YOU?


In the following diagrams, O is the centre of the circle. Determine, with reasons, the value of x and y.

EXAMPLE 5

Determine, with reasons, the value of x.

ACTIVITIES/ ASSESSMENT	MIND ACTION SERIES (May 2012 Issue) Chapter 8 • p 217 Exercise 2 • p 221 Exercise 3 • p223 Exercise 4 • p 225 Exercise 5	CLASSROOM MATHEMATICS p 261 • Exercise 10.2	VIA AFRICA Chapter 8 • p 211 Exercise 2 • p 214 Exercise 3
	ON derstand the wording of the theo rect way of writing the reason f		
• If the centre of for THESE th	of the circle is given you must lo neorems →	ok C x O C x A B B B	A O B
	er to mark all radii as this gives triangles to work with.	A	ОВ
circumferent the angles si	ere are angles on the ce of the circle, remember to ma ubtended by the same arc! creative rather than analytical, a		C D B B

Algebra and Geometry. They are required to use their spatial and logical skills instead of the analytical skills they were accustomed to using in Algebra. With enough practice **YOU CAN DO IT**!

VALUES	The Ferris wheel, radius 25, below had equally spaced seats, such that the central angle was 20°
	Because the seats are 20° apart, there will be $\frac{360^{\circ}}{20^{\circ}} = 18$ seats.
	It is important to have the seats evenly spaced for balance. To determine how far apart the adjacent seats are, use the triangle to the right. We will need to use sine to find x and multiply by 2.
	we will need to use sine to find x and multiply by 2. $sin10^{\circ} = \frac{x}{25}$
	x = 4.3 ²⁵ The total distance apart is 8.6 feet.
	https://www.ck12.org/geometry/arcs- in-circles/lesson/Arcs-in-Circles- GEOM/