SUBJECT and GRADE	MATHEMATICS Gr 11
TERM 1	Week 5
TOPIC	EUCLIDEAN GEOMETRY-LESSON 1
AIMS OF LESSON	State and prove the theorems for circle geometry. - The line drawn perpendicular from the centre of a circle to a chord bisects the chord. - The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.
RESOURCES	
Paper based resources	Digital resources
Go to the chapter in your textbook on Circle Geometry.	Chord in a circle https://www.youtube.com/watch?v=J06Swxrvfkw The perpendicular line from the centre of a circle bisects the chord and inverse https://www.youtube.com/watch? $v=g u$ rGEf9Z2U https://www.youtube.com/watch?v=LOAe8vbxbp0 https://www.youtube.com/watch? v=XmkhPLFTh8Y The perpendicular bisector line to the chord passes through the centre of the circle https://www.youtube.com/watch? $v=y 5 R P F T U j 3 x A$ Example https://www.youtube.com/watch?v=ma0qXCyxiQo
INTRODUCTION: Introduction to Circle Geometry: - Euclidean geometry, the study of plane and solid figures on the basis of axioms and theorems employed by the Greek mathematician Euclid (300 BC).	
BASIC CIRCLE TERMIN	Radius: A line from the center to any point on the Circumference of the circle. Diameter: A line passing through the center of the circle. It is double the length of the radius. Chord: A line with end-points on the circumference. Secant: A line passing through two points on the circle. Tangent: A line touching the circle at only one point.

CONCEPTS AND SKILLS

THEOREM 1

The line drawn perpendicular from the centre of a circle to a chord bisects the chord.

If $\mathrm{OM} \perp \mathrm{AB}$ then $\mathrm{AM}=\mathrm{MB}$

CONVERSE THEOREM 1

The line segment joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.

If $\mathrm{AM}=\mathrm{MB}$ then $\mathrm{OM} \perp \mathrm{AB}$

Acceptable REASON when you use the Theorem in the exam:	line from centre \perp to chord	Line from centre to midpoint of chord
PROOF OF THEOREMS	Given: Circle with centre O with $\mathrm{OM} \perp \mathrm{AB}$.	Given: Circle with centre O. M is a point on chord $A B$ such that $A M=M B$.
	What to prove: $\mathrm{AM}=\mathrm{MB}$	What to prove: $\mathrm{OM} \perp \mathrm{AB}$
	Construction: Join OA and OB	Construction: Join OA and OB
	Proof:	Proof:
	In Δ OAM and Δ OBM:	In \triangle OAM and Δ OBM:
	(i) $\mathrm{OA}=\mathrm{OB}$ radii (ii) $\widehat{M}_{1}=\widehat{M}_{2}=90^{\circ}$ given (iii) $\mathrm{OM}=\mathrm{OM}$ common $\therefore \triangle \mathrm{OAM} \equiv \Delta \mathrm{OBM}$ (RHS)	(i) $\mathrm{OA}=\mathrm{OB}$ radii (ii) $\mathrm{AM}=\mathrm{BM}$ given (iii) $\mathrm{OM}=\mathrm{OM}$ common $\therefore \Delta \mathrm{OAM} \equiv \Delta \mathrm{OBM}$ (SSS)
	$\therefore \mathrm{AM}=\mathrm{MB}$	$\therefore \widehat{M_{1}}=\widehat{M}_{2}=90^{\circ} \quad \angle S$ on straight line

EXAMPLE 1

In the diagram is O is the centre of the circle, $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{AB}=8 \mathrm{~cm}$. The radius of the circle is 5 cm .
Calculate the length of MC (x).

ANSWER:

Statement
$\mathrm{AM}=\mathrm{MB}=4$
$\mathrm{OM}^{2}=\mathrm{OA}^{2}-\mathrm{AM}^{2}$
$\mathrm{OM}^{2}=(5)^{2}-(4)^{2}$
$\mathrm{OM}^{2}=9$
$\mathrm{OM}=3$
$\mathrm{OC}=\mathrm{OM}+x$
$5=3+x$
$\therefore x=2$
$\mathrm{OC}=$ radius

Reason

line from centre \perp to chord
Pythagoras

EXAMPLE 2 - CAN YOU?

In the diagram is:
O is the centre of the circle, $\mathrm{AM}=\mathrm{MB}=15$ units and $\mathrm{OM}=8$ units. Calculate the radius of the circle (x).

ANSWER:

Statement

O $\widehat{M} \mathrm{~A}=90^{\circ}$
$\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}$
$\mathrm{OA}^{2}=(8)^{2}+(15)^{2}$
$\mathrm{OA}^{2}=289$
$\mathrm{OA}=17=$ radius

ACTIVITIES/	MIND ACTION SERIES	CLASSROOM	VIA AFRICA
	(May 2012 Issue)	MATHEMATICS p 256	Chapter 8
	Chapter 8p 214 Excercise 1	Exercise 10.1	p 209 Exercise 1

CONSOLIDATION

- Know and understand the wording of the theorem(s).
- Learn the correct way of writing the reason for the Theorem(s)
Remember to use Pythagoras when you see these theorem(s).
$a^{2}+b^{2}=c^{2}$

SUBJECT and GRADE	MATHEMATICS Gr 11	
TERM 1	Week 5	
TOPIC	EUCLIDEAN GEOMETRY-LESSON 2	
$\begin{aligned} & \text { AIMS OF } \\ & \text { LESSON } \end{aligned}$	State and prove the theorems for circle geometry. In this lesson we will look at TWO theorems regarding the ANGLE AT THE CENTRE of the circle: - The angle at the centre is twice the angle at the circumference. - The angle in a semicircle is a right angle. As well as TWO theorems regarding angles on the circumference subtended by the SAME OR EQUAL CHORDS: - Angles in the same segment are equal. - Equal chords subtend equal angles at the circumference	
RESOURCES	Paper based resources	Digital resources
	Go to the chapter in your textbook on Circle Geometry.	- Angle at the Centre is twice the angle at the circumference: https://www.youtube.com/watch?v=y7-yT5qUtN0 https://www.youtube.com/watch?v=Y5VAApqtIZY - Angles in the same segment: https://www.youtube.com/watch? $v=v P n t R C G k Z C o$ https://www.youtube.com/watch? $\mathrm{v}=\mathrm{BD} q E L k 2 x C P U$ - Angle in semi circle https://www.youtube.com/watch?v=oT7arIHdOD8 https://www.youtube.com/watch?v=oT7arIHd0D8 - General https://www.youtube.com/watch?v=BDqELk2xCPU https://www.youtube.com/watch?v=V711BEb06ck\&t=12s
INTRODUCTION		
BASIC CIRCLE TERMINOLOGY - Semicircle: half of a circle; the arc from one end of a diameter to the other. - Segment of a circle can be defined as a region bounded by a chord and a corresponding arc lying between the chord's endpoints. - Subtended: In geometry, an angle is subtended by an arc, line segment or any other section of a curve when its two rays pass through the endpoints of that arc, line segment or curve section.		

PROOF OF THEOREM		(ii)
	Given: Circle with centre O and A, B and C are all points on the circumference of the circle. What to prove: $A \widehat{O} B=2 \times A \widehat{C} B$ Construction: Join CO and produce to P .	
	Proof: (i) Let $\widehat{\mathrm{C}_{1}}=x$ and $\widehat{C_{2}}=y$ $\begin{array}{ll} \widehat{\mathrm{C}_{1}}=\widehat{\mathrm{A}}=x & \angle \text { s opp. equal radii } \\ \widehat{\mathrm{O}_{1}}=\widehat{\mathrm{C}_{1}}+\widehat{\mathrm{A}}=2 x & \text { Ext } \angle \text { of } \triangle \mathrm{OAC} \end{array}$	Proof: (ii) Let $\widehat{\mathrm{C}_{1}}=x$ and $\widehat{\mathrm{C}_{2}}=y$ $\begin{array}{ll} \widehat{\mathrm{C}_{1}}=\widehat{\mathrm{A}}=x & \angle \text { s opp. equal } \\ \text { radii } \end{array}$
	Similarly, in \triangle OCB: $\widehat{\mathrm{O}_{2}}=\widehat{\mathrm{C}_{2}}+\widehat{\mathrm{B}}=2 y$	Similarly, in \triangle OCB: $\widehat{\mathrm{O}_{2}}=\widehat{\mathrm{C}_{2}}+\widehat{\mathrm{B}}=2 y$
	$\begin{aligned} \widehat{\mathrm{O}_{1}}+\widehat{\mathrm{O}_{2}} & =2 x+2 y \\ & =2(\boldsymbol{x}+\boldsymbol{y}) \\ & =2\left(\widehat{\mathrm{C}_{1}}+\widehat{\mathrm{C}_{2}}\right) \\ \therefore \mathrm{AO} \mathrm{~B} & =2 \times A \widehat{\mathrm{C}} \mathrm{~B} \end{aligned}$	$\begin{aligned} \widehat{\mathrm{O}_{2}}-\widehat{\mathrm{O}_{1}} & =2 y-2 x \\ & =2(\boldsymbol{y}-\boldsymbol{x}) \\ & =2\left(\widehat{\mathrm{C}_{2}}-\widehat{\mathrm{C}_{1}}\right) \\ \therefore \mathrm{AO} \mathrm{~B} & =2 \times A \mathrm{C} B \end{aligned}$

EXAMPLE 1

In the following diagrams, O is the centre of the circle. Determine, with reasons, the value of x.

EXAMPLE 2 - CAN YOU?

In the following diagrams, O is the centre of the circle. Determine, with reasons, the values of x and y.

2.1	2.2
ANSWER:	
Statement	Reason
2.1 x $=120^{\circ}$	\angle at centre $=2 \times \angle$ at circumference
$2.2 x=75^{\circ}$	\angle at centre $=2 \times \angle$ at circumference
$\widehat{O_{2}}=210^{\circ}$	revolution
$y=105^{\circ}$	\angle at centre $=2 \times \angle$ at circumference

THEOREM 3

The angle subtended at the circle by a diameter is a right angle.
(The angle in a semi-circle is 90°.)

You do not have to
know the proof for this
theorem for exam
purposes, but I am sure
you can think of one..

If AB is a diameter then $\hat{C}=90^{\circ}$
Acceptable REASON when you use the Theorem in the exam:
\angle in semi-circle

THEOREM 4

An arc or chord of a circle subtends equal angles at the circumference of the circle. (angles in the same segment of the circle are equal if subtended by the same arc / chord)

You do not have to know the proof for this
theorem for exam
purposes, but I am sure you can think of one.

The angles on the circumference $\widehat{C}=\widehat{D}$ because both are subtended by arc $A B$.
Acceptable REASON when you use the Theorem in the exam:

In the following diagrams, O is the centre of the circle. Determine, with reasons, the value of x and y.

4.1		4.2
ANSWER:		
Statement		Reason
	$x=40^{\circ}$	\angle s in the same segment
	$y=40^{\circ}$	\angle s in the same segment
4.2	$x=45^{\circ}$	\angle s in the same segment
	$y=70^{\circ}$	\angle in semi-circle

EXAMPLE 5

Determine, with reasons, the value of x.
5.1

5.2 - CAN YOU?

ANSWER:

Statement

$5.1 \quad x=24^{\circ}$
$5.2 x=56^{\circ}$

Reason

Equal chords ; equal $\angle s$
Equal chords ; equal \angle s

ACTIVITIES/ ASSESSMENT	MIND ACTION SERIES (May 2012 Issue) Chapter 8 - p 217 Exercise 2 - p 221 Exercise 3 - p223 Exercise 4 - p 225 Exercise 5		ASSROOM THEMATICS p 261 Exercise 10.2	VIA AFRICA Chapter 8 - p 211 Exercise 2 - \quad 214 Exercise 3
CONSOLIDATION - Know and understand the wording of the theorem(s). - Learn the correct way of writing the reason for the Theorem(s)				
- If the centre of the circle is given you must look for THESE theorems \rightarrow				
- Also remember to mark all radii as this gives you isosceles triangles to work with.				
- If you see there are angles on the circumference of the circle, remember to mark the angles subtended by the same arc!				
- Geometry is creative rather than analytical, and students often have trouble making the leap between Algebra and Geometry. They are required to use their spatial and logical skills instead of the analytical skills they were accustomed to using in Algebra. With enough practice YOU CAN DO IT!				

VALUES	The Ferris wheel, radius 25, below had equally spaced seats, such that the central angle was 20° Because the seats are $20 \circ$ apart, there will be $\frac{360^{\circ}}{20^{\circ}}=18$ seats. It is important to have the seats evenly spaced for balance. To determine how far apart the adjacent seats are, use the triangle to the right. We will need to use sine to find x and multiply by 2.
The total distance apart is 8.6 feet. (in $10^{\circ}=\frac{x}{25}$	
https://www.ck12.org/geometry/arcs- in-circles/lesson/Arcs-in-Circles- GEOM/	

