SUBJECT and GRADE	MATHEMATICS Gr 11	
TERM 1	Week 7	
TOPIC	Tangent Theorems	
AIMS OF LESSON	State and prove the theorems for circle geometry. - A tangent to a circle is perpendicular to the radius at the point of contact. - The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment. - Two tangents drawn to a circle from the same point outside the circle are equal in length	
RESOURCES	Paper based resources	Digital resources
	Refer to the chapter in your textbooks on Circle Geometry.	Proof of the tan-chord theorem: https://www.youtube.com/watch? $v=m j R q u 3 o J t f A$ Understand Alternate Segment Theorem to find equal angles in Circle https://www.youtube.com/watch? $v=I v f I x e z w b 5 A$ https://www.youtube.com/watch? $\mathrm{v}=$ QmPUlc5BDmk Tan; radius theorem: https://www.youtube.com/watch? v=IcgycGSq9Us Tan; radius theorem and tans from the same point theorem: https://www.youtube.com/watch?v=nQntUl7Wbe0 All three tangent theorems in one: https://www.youtube.com/watch?v=DroUzFiqRsc
INTRODUCTION		
- A tangent to a circle is perpendicular to the radius at the point of contact. - The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.		

BASIC CIRCLE TERMINOLOGY

- TANGENT: The tangent to a circle is defined as a straight line which touches the circle at a single point. The point where the tangent touches a circle is known as the point of tangency or the point of contact.

CONCEPTS AND SKILLS

THEOREM 8

A tangent to a circle is perpendicular to the radius at the point of contact.

If AC is a tangent and OB is a radius then $\mathrm{OB} \perp \mathrm{AC}$

CONVERSE THEOREM 8

If a line is drawn perpendicular to a radius at the point where the radius meets the circle, then the line is a tangent to the circle.

EXAMPLE 1

In the following diagrams, O is the centre of the circle. Determine, with reasons, the value of $x ; y$ and z.

ANSWER:
Statement
$1.1 \widehat{B_{1}}=90^{\circ}$
$2 x+3 x+90^{\circ}=180^{\circ}$
$5 x=90^{\circ}$
$x=18^{\circ}$
$1.2 x=25^{\circ}$
$y=90^{\circ}$
$z=65^{\circ}$

Reason
$\tan \perp$ radius
$\operatorname{sum} \angle \mathrm{s}$ in Δ
$\tan \perp$ radius
\angle in semi-circle
$\operatorname{sum} \angle \sin \Delta$

CONCEPTS AND SKILLS

THEOREM 9

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to an angle in the alternate segment.

$$
\widehat{B_{2}}=\widehat{E_{2}} \text { and } A \widehat{B} E=\widehat{D}
$$

CONVERSE THEOREM 9

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle.

Acceptable REASON when you use the Theorem in the exam:

Tan-chord theorem

Converse tan-chord theorem

PROOF OF Given:

THEOREM Tangent ABC
What to prove: $\widehat{B_{2}}=\widehat{E_{2}}$
Construction: Draw diameter BOF and join EF
Proof:
$\hat{B}_{1}+\hat{B}_{2}=90^{\circ} \quad \tan \perp$ radius
$\widehat{E}_{1}+\widehat{E}_{2}=90^{\circ} \quad \angle$ in semi-circle
Let $\widehat{\mathrm{B}_{1}}=x$
$\therefore \hat{B}_{2}=90^{\circ}-x$
$\hat{B}_{1}=\widehat{E}_{1}=x \quad \angle \mathrm{~s}$ in the same segment
$\therefore \hat{E}_{2}=90^{\circ}-x$
$\therefore \widehat{B_{2}}=\widehat{E_{2}}$

EXAMPLE 2

In the diagram is AC a tangent to the circle at point B .
2.1 Determine, with reasons, the value of x and y.

ANSWER:

Statement
$2.1 x=50^{\circ}$
$y=70^{\circ}$

Reason
Tan-chord theorem

Tan-chord theorem

EXAMPLE 3- CAN YOU?

In the diagram AC is a tangent to the circle at point $\mathrm{B} . \mathrm{O}$ is the centre of the circle.
3.1 Determine, with reasons, the value of z.
3.2 Determine, with reasons, the value of x.
3.3 Determine, with reasons, the value of y.

ANSWER:

Statement
$3.1 \quad z=40^{\circ}$
$3.2 x=50^{\circ}$
$3.3 y=40^{\circ}$

Reason

Tan-chord theorem
$\tan \perp$ radius

Tan-chord theorem

CONCEPTS AND SKILLS

THEOREM 10

If two tangents are drawn from the same point outside a circle, then they are equal in length.

If $A C$ is a tangent and $A B$ is a tangent then $A C=A B$
Acceptable REASON when you use the Theorem in the exam:

Tans from the same point A

EXAMPLE 4

In the diagram AC and AB are tangents to the circle at point C and $\mathrm{B} . \mathrm{O}$ is the centre of the circle.
4.1 Determine, with reasons, the value of x and y

ANSWER:
Statement

$$
\begin{array}{r}
\text { 4.1 } \mathrm{AC}=\mathrm{AB} \\
x=70^{\circ} \\
y=70^{\circ}
\end{array}
$$

Reason

tans from the same point A
$\tan \perp$ radius
\angle s opp equal tans.

In the diagram AB and BC are tangents to the circle at point A and C .
5.1 Determine, with reasons, the value of x and y.

ANSWER:

Statement
5.1 $\mathrm{AB}=\mathrm{BC}$
$x=80^{\circ}$
$y=80^{\circ}$
Reason
tans from the same point B.
tan-chord theorem
\angle s opp equal tans.

ACTIVITIES/ASSESSMENT

MIND ACTION SERIES (May 2012 Issue)
Chapter 8

- p 234 Exercise 8
- p 236 Exercise 9

CONSOLIDATION

- Know and understand the wording of the TWO theorem(s) regarding a cyclic quad.
- Learn the correct way of writing the reason for the Theorem(s)

There are TWO strategies to proof that a line is a tangent:

1. Proof that the line is drawn perpendicular to a radius at the point where the radius meets the circle, then the line is a tangent to the circle.

2. Proof that the line drawn through the endpoint of a chord, makes with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle.:

VALUES
A line is tangent to a circle if it touches it at one and only one point. If a line is
tangent to a circle, then it is perpendicular to the radius drawn to the point of
tangency. Check out the bicycle wheels in the below figure.
In this figure, the wheels are, of course, circles, the spokes are radii, and the ground is
a tangent line. The point where each wheel touches the ground is a point of tangency.
And the most important thing - what the theorem tells you - is that the radius that
goes to the point of tangency is perpendicular to the tangent line.
