SUBJECT and GRADE	MATHEMATICS Gr 11		
TERM 1	Week 7		
TOPIC	Tangent Theorems		
AIMS OF LESSON	 State and prove the theorems for circle geometry. A tangent to a circle is perpendicular to the radius at the point of contact. The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment. Two tangents drawn to a circle from the same point outside the circle are equal in length 		
RESOURCES	Paper based resources Refer to the chapter in your textbooks on Circle Geometry.	Digital resources Proof of the tan-chord theorem: https://www.youtube.com/watch?v=mjRqu3oJtfA Understand Alternate Segment Theorem to find equal angles in Circle https://www.youtube.com/watch?v=IvfIxezwb5A https://www.youtube.com/watch?v=QmPUlc5BDmk Tan; radius theorem: https://www.youtube.com/watch?v=IcgycGSq9Us Tan; radius theorem and tans from the same point theorem: https://www.youtube.com/watch?v=nQntUl7Wbe0 All three tangent theorems in one:	
INTRODUCTION		<u>https://www.youtube.com/watch?v=DroUzFiqRsc</u>	

INTRODUCTION

Circles have different angle properties, described by theorems. In this lesson we will look at **THREE Theorems** regarding **TANGENTS** to a circle:

- A tangent to a circle is perpendicular to the radius at the point of contact.
- The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.
- Two tangents drawn to a circle from the same point outside the circle are equal in length.

BASIC CIRCLE TERMINOLOGY

• **TANGENT:** The **tangent to a circle** is defined as a straight line which touches the **circle** at a single point. The point where the **tangent** touches a **circle** is known as the point of **tangency** or the point of contact.

CONCEPTS AND SKILLS

THEOREM 9

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to an angle in the alternate segment.

$$\widehat{B_2} = \widehat{E_2}$$
 and $A\widehat{B}E = \widehat{D}$

CONVERSE THEOREM 9

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle.

Acceptable RE	ASON		
when you use the	he	Tan-chord theorem	Converse tan-chord theorem
Theorem in the	exam:		
PROOF OF	Given:		
THEOREM	Tangen	t ABC	
	U		
	What t	o prove: $\widehat{B_2} = \widehat{E_2}$	
	That U	Proto: $D_2 = D_2$	
	Constr	uction: Draw diameter BOF a	and join FF
		uction. Draw drameter DOF a	
	Proof:		
	$\hat{B}_1 + \hat{B}_2$	$t_2 = 90^\circ$ tan \perp ra	adius
	$\hat{E}_1 + \hat{E}_2$	$z = 90^{\circ}$ \angle in ser	ni-circle
	Let $\widehat{B_1}$	= x	
	$\therefore \hat{B}_2 = \hat{B}_2$		
			
	$\hat{D} = \hat{F}$	-x (s in the	a sama sagmant
	$\hat{B}_1 = \hat{E}_1$	$-x \qquad \qquad$	e same segment
	$ \hat{E}_{2} = 0 $ $ \hat{E}_{2} = 0 $ $ \hat{E}_{2} = 0 $	$90^{\circ} - x$	
	$\therefore B_2 =$	<i>E</i> ₂	

EXAMPLE 2

- In the diagram is AC a tangent to the circle at point B.
- **2.1** Determine, with reasons, the value of x and y.

	$D \xrightarrow{70^{\circ}} x E$ $A \xrightarrow{50^{\circ}} y$ C
ANSWER:	
Statement	Reason
2.1 $x = 50^{\circ}$	Tan-chord theorem
$y = 70^{\circ}$	Tan-chord theorem

EXAMPLE 3– CAN YOU?

In the diagram AC is a tangent to the circle at point B. O is the centre of the circle.

- **3.1** Determine, with reasons, the value of z.
- **3.2** Determine, with reasons, the value of x.
- **3.3** Determine, with reasons, the value of y.

	A B C
ANSWER:	
Statement	Reason
3.1 $z = 40^{\circ}$	Tan-chord theorem
$3.2 \qquad x = 50^{\circ}$	tan⊥radius
3.3 $y = 40^{\circ}$	Tan-chord theorem

F

Е

y

Ο

D

Ζ

CONCEPTS AND SKILLS

THEOREM 10

If two tangents are drawn from the same point outside a circle, then they are equal in length.

You do not have to know the proof for these theorems for exam purposes.

CAN YOU THINK OF ONE?

Acceptable REASON when you use the Theorem in the exam:

Tans from the same point A

EXAMPLE 4

In the diagram AC and AB are tangents to the circle at point C and B. O is the centre of the circle.

4.1 Determine, with reasons, the value of x and y

ANSWER:	
Statement	Reason
$4.1 \qquad AC = AB$	tans from the same point A
$x = 70^{\circ}$	tan⊥radius
$y = 70^{\circ}$	∠ s opp equal tans.

EXAMPLE 5– CAN YOU?				
In the diagram AB and BC are tang point A and C.	ents to the circle at			
5.1 Determine, with reasons, the	value of <i>x and y</i> .	B	D 80° C	
ANSWER:				
Statement		Reason		
$5.1 \qquad AB = BC$	AB = BC		tans from the same point B.	
$x = 80^{\circ}$		tan-chord theorem		
$y = 80^{\circ}$		\angle s opp equal tans.		
ACTIVITIES/ASSESSMENT				
MIND ACTION SERIES (May 2012 I	(ssue) CLASSRC	OOM MATHEMATICS	VIA AFRICA	
Chapter 8	• p2	75 Exercise 10.6	Chapter 8	
• <i>p</i> 234 <i>Exercise</i> 8	-	77 Exercise 10.7	• <i>p</i> 222 Exercise 8	
• <i>p 236 Exercise</i> 9	Г		L	
CONSOLIDATION				
 Know and understand the wor Learn the correct way of writing 			vclic quad.	
1.	2. s	3.	~	
O A B C			C B B	
	Tan-chord	l theorem to	tans from the same point	
tan \perp radius	1 an-choru	theorem ta	ins from the same point	

