

1	western Cape
K 1	Government

SUBJECT and GRADE	Mathematics Grade 12				
TERM 1	Week 1				
TOPIC	Sequences and Series				
AIMS OF LESSON	Recognise an Arithmetic Sequences				
	• Find the general arithmetic sequence				
	• Answer question based on the arithmetic sequence like finding the position in a sequence.				
	• Find the sum of an arithmetic sequence				
	Sigma notation				
RESOURCES	Paper based resources	Digital resources			
	Textbook chapter about Sequences and Series	https://www.youtube.com/watch?v=WE3S6OAwc-s			
INTRODUCTION	DUCTION In the previous grades you were introduced to numeric number patterns which is a sequence of numbers that for				
specific pattern. An example of a linear pattern (arithmetic sequence) is one where there is a constant diff					
	between consecutive terms. In other words, the same number will be added to, or subtracted from each consecutive				
term.					

A sequence is an ordered list of numbers or objects. A linear number pattern is also called an ARITHMETIC SEQUENCE

The arithmetic sequence: 5; 9; 13; 17; 21 can be presented as follows

Example 2:	Solution:	Example 3:	Solution:		
Find the number of terms in	d = -6 - (-2) = -4	Determine the first three	Constant difference: $d = 10$		
the arithmetic sequence	$T_n = a + (n-1)d$	terms of an arithmetic	$T_4 = 39$		
-2; -6; -10;; -150	$T_n = -2 + (n-1)(-4)$	sequence if the constant	$T_n = a + (n-1)d$		
	$T_n = -4n + 2$	difference is 10 and the	$T_4 = a + (4 - 1)d$		
	$T_n = -4n + 2 = -150$	fourth term is 39.	39 = a + 3d		
	$\therefore -4n = -152$		39 = a + 3(10)		
	$\therefore n = 38$		9 = a		
	There are 38 terms		Hence the sequence is 9; 19; 29		
Example 4:	$T_2 = a + d = 9$ (1) 2^{nd} term	Example 5:	Solution:		
In an arithmetic sequence the	$\bar{T}_5 = a + 4d = 21$ (2) 5 th term	2p-3; 3p-1; 5p-2	a) $d = T_2 - T_1 = T_3 - T_2$		
2^{nd} term is 9 and the 5^{th} term	3d = 12 (2) - (1)	are the first three terms of	(3p-1) - (2p-3) = (5p-2) - (3p-1)		
is 21. Determine	d = 4	an arithmetic sequence.	3p - 1 - 2p + 3 = 5p - 2 - 3p + 1		
	$\therefore T_2 = a + d = 9$		p + 2 = 2p - 1		
a) The first three terms of	a + 4 = 9	a) Determine the value of	p = 3		
the sequence.	a = 5	<i>p</i> .			
_	First three terms are 5; 9; 13;		b) Replacing $p = 3$ in the sequence we		
		b) The first three terms of	have the first three terms as 3; 8; 13		
	$T_{60} = a + 59d = 5 + 59(4) = 241$	the sequence.			
b) The 60^{th} term			c) $T_n = a + (n-1)d = 2013$		
	Hence the 60^{th} term is 241	c) Determine the term	3 + (n - 1)(5) = 2013		
		equal to 2013	3 + 5n - 5 = 2013		
			5n = 2015		
			n = 403		
CAN YOU?	1) Given the following sequence: 3; 8; 13;	18;	Solutions:		
	Determine:		1) a) $T_n = 5n - 2$		
	a) The general term.		b) 98		
	b) The 20 th term.		c) $n = 45$		
	c) Which term of the sequence is equal	to 223?			
	2) In an arithmetic sequence, $T_3 = -2$ and	$T_8 = 23$. Determine the first	2) $d = 5$		
	term and the constant difference.	a = -12			
	3) Find the number of terms in the arithme	3) 82			
	-5; -11; -17;; -491				
	4) The first three terms of an arithmetic sec	4) a) 13			
	x - 8; x; $2x - 5$. Determine	b) $T_n = 8n - 3$			
	a) The value of x .	c) 917			
	b) The general term.				
	c) The value of the 115^{th} term.				

Example 6:			
Consider the arithmetic series $(-1) + \left(\frac{-3}{2}\right) + (-2) + \dots + (-16)$.			
a) Determine the number of terms in this series.	b) Calculate the sum of the series.		
Solution:	Solution:		
$T_n = a + (n-1)d$	$S_n = \frac{n}{2}[a+l]$		
$T_n = -1 + (n-1)\left(-\frac{1}{2}\right) = -16$			
$\therefore \ -1 - \frac{1}{2}n + \frac{1}{2} = -16$	$\therefore S_{31} = \frac{31}{2} [-1 + (-16)]$		
$\therefore -\frac{1}{2}n = -16 + \frac{1}{2}$	$\therefore S_{31} = -\frac{527}{2}$		
$\therefore n = 31$			
Example 7:	Example 8:		
How many terms of the arithmetic series $1 + 4 + 7 + \cdots$ will add up	Consider the arithmetic series $-4 - 1 + 2 + \cdots$		
to 145?	Calculate the smallest value of <i>n</i> for which $S_n > 300$		
Solution:	Solution:		
$a = 1; d = 3; n = ?; S_n = 145$	$a = -4; d = 3; n = ?;$ let $S_n = 300$		
$S_n = \frac{n}{2} [2a + (n-1)d]$	$S_n = \frac{n}{2} [2a + (n-1)d] = 300$		
	$\frac{n}{2}\left[2(-4) + (n-1)3\right] = 300$		
$145 = \frac{n}{2}[2(1) + (n-1)3]$	$\therefore n[3n-11] = 600$		
290 = n(2 + 3n - 3)	$\therefore 3n^2 - 11n - 600 = 0$		
290 = n(3n - 1)			
$0 = 3n^2 - n - 290$	$-(11)\pm\sqrt{(-11)^2-4(3)(-600)}$		
0 = (3n + 29)(n - 10)	$\therefore n \equiv \frac{1}{2(3)}$		
$n = -\frac{29}{2}$ or $n = 10$	$\therefore n = 16,09$ or $n = -12,43$		
3			
$\therefore n = 10$; $n \in N$	\therefore The smallest possible value of n is 17.		

SIGMA NOTATION: The Greek letter \sum Sigma means the sum of. It is used to denote the sum of a set of consecutive terms of a sequence or series. In this notation we have to indicate the position of the first and last term of the sequence/series which are added. This is read as, "the sigma or sum of T_k , from k = 1 to k = n. $\sum_{k=1}^{n} T_{k} = T_{1} + T_{2} + T_{3} + \dots + T_{n} = S_{n}$ *n* is the number or position of This means, take the sum of the terms of a the last term of the set of sequences/series from the first term to the n'th numbers which is being term of the sequence/series. added. Lets refer to it as *last/top value* Or it is read as the sum of the first *n* terms of the sequence/series. General term expressed in *n*. the number of terms which are added: terms of kn = top value - bottom value + 1k=m $S_n = \frac{n}{2}[2a + (n-1)d] = \sum_{k=1}^n [a + (k-1)d]$ *m* is the number or position of the first term of the set of numbers which is being added. Lets refer to it as *bottom value* Example 10: Determine the value of: Example 9: Determine the value of: $\sum (3n+2)$ $\sum_{k=4}^{2k} 2k$ Substitute, n = 1, in general term up to, Solution: Number of terms: n = 5.Method 1 Solution: Top – bottom+1 Method 1 =(7-4+1)=4 $S_n = \sum_{n=1}^{3} (3n+2)$ $\sum 2k$ $S_5 = (3.1+2) + (3.2+2) + (3.3+2) + (3.4+2) + (3.5+2)$ $S_4 = 2(4) + 2(5) + 2(6) + 2(7)$ = 5 + 8 + 11 + 14 + 17= 8 + 10 + 12 + 14 $S_{5} = 55$ $S_{4} = 44$

CAN YOU?	1) Determine $5 + 12 + 19 + \dots + 54$			$\underline{\text{Answers:}}$	Answers:		
	2) How many terms of the arithmetic series 3 + 7 + 11 + … will add up to 210?				1) 230 1p 2) 10	 236 10 	
	3) Determine the value of the following			3) 165	3) 165		
	$\sum_{r=2}^{10} (2r+5)$			4)	4)		
	4) Write the following in sigma notation $7 + 10 + 13 + \dots + 25$				$\sum_{n=0}^{\infty} (7+3n)$		
ACTIVITIES/ASSESSMENT	Mind Action Ser	ies	Via Afrika		Classroom Ma	thematics	
	Exerise	Page	Exerise	Page	Exerise	Page	
	2.	5	1.	12	1.3	7	
	4.	12	5.	22	1.5	23	
CONSOLIDATION	Arithmetic Sequ	$\begin{array}{c} \text{Ience} \\ T_1, \ T_2 \\ T_n = c \end{array}$	$2_{2}, T_{3}, T_{4}, \dots T_{n}$ a + (n - 1)d	where $\boldsymbol{a} = T_1$	and $d = T_2$	$T_{1} = T_{3} - T_{2}$	
	$T_1 + T_2 + T_3 + T_4 + \dots + T_n = S_n$						
	Arithmetic Series $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2} [a+l]$						
	Sigma Notatio	on $\sum_{k=1}^{n}$	$T_k = S_n$				