Education

An Arithmetic sequence is a sequence where the difference between consecutive numbers or terms remain constant.

In the sequence: $5 ; 9 ; 13 ; 17 ; 21 ; .$.

$$
\begin{aligned}
& \text { We see that } \boldsymbol{a}=\mathbf{5} \text { and } \boldsymbol{d}=\mathbf{4} \\
& \boldsymbol{T}_{\mathbf{1}}=5=\quad \boldsymbol{a} \\
& \boldsymbol{T}_{2}=9=5+4=\quad \boldsymbol{a}+\boldsymbol{d} \\
& \boldsymbol{T}_{\mathbf{3}}=13=5+2(4)=\boldsymbol{a}+\mathbf{2} \boldsymbol{d} \\
& \boldsymbol{T}_{\mathbf{4}}=17=5+3(4)=\boldsymbol{a}+\mathbf{3} \boldsymbol{d}
\end{aligned}
$$

The General Term $\boldsymbol{T}_{\boldsymbol{n}}$
Is given by
$T_{n}=a+(n-1) d$

Example 1:
Given the sequence: $2 ; 5 ; 8 ; \ldots$
a) Determine the general term of the sequence.
b) Use the general rule to determine the $40^{\text {th }}$ term.
c) Which term in the pattern will be equal to 2012 .

Solution: Constant difference: $d=T_{2}-T_{1}=5-2=3$

$$
a=T_{1}=2
$$

$$
\begin{array}{rlr}
T_{n} & =a+(n-1) d & \\
& =2+(n-1) 3 & \\
& =2+3 n-3 & \\
& =3 n-1 & \therefore T_{n}=3 n-1
\end{array}
$$

$T_{n}=3 n-1$
$\therefore T_{40}=3(40)-1$

$$
T_{40}=119
$$

The position of the term is 40 . Therefore, $n=40$
$T_{n}=2012$
$\begin{aligned} \therefore T_{n}=3 n-1 & =2012 \\ 3 n & =2012+1\end{aligned} \quad \begin{gathered}\text { The value of the term is 2012. Therefore, } T_{n}=2012\end{gathered}$
$3 n=2012+1$
$3 n=2013$
$n=671$
\therefore term number 671 of the sequence is equal to 2012

Example 2: Find the number of terms in the arithmetic sequence $-2 ;-6 ;-10 ; \ldots ;-150$	Solution: $\boldsymbol{d}=-6-(-2)=-\mathbf{4}$ $T_{n}=a+(n-1) d$ Example 3: $T_{n}=-2+(n-1)(-4)$ Determine the first three $T_{n}=-4 n+2$ terms of an arithmetic $T_{n}=-4 n+2=-\mathbf{1 5 0}$ diffenence if the constant 10 and the $\therefore-4 n=-152$ fourth term is 39. $\therefore n=38$ There are 38 terms	Solution: Constant difference: $\boldsymbol{d}=\mathbf{1 0}$ $T_{4}=39$ $\begin{aligned} T_{n} & =a+(n-1) d \\ T_{4} & =a+(4-1) d \\ 39 & =a+3 d \\ 39 & =a+3(10) \\ 9 & =a \end{aligned}$ Hence the sequence is $9 ; 19 ; 29$
Example 4: In an arithmetic sequence the $2^{\text {nd }}$ term is 9 and the $5^{\text {th }}$ term is 21 . Determine a) The first three terms of the sequence. b) The $60^{\text {th }}$ term		Solution: $\begin{aligned} & \text { a) } \boldsymbol{d}=T_{2}-T_{1}=T_{3}-T_{2} \\ &(3 p-1)-(2 p-3)=(5 p-2)-(3 p-1) \\ & 3 p-1-2 p+3=5 p-2-3 p+1 \\ & p+2=2 p-1 \\ & \boldsymbol{p}=\mathbf{3} \end{aligned}$ b) Replacing $p=3$ in the sequence we have the first three terms as $3 ; 8 ; 13$ $\text { c) } \begin{aligned} T_{n}=a+(n-1) d & =2013 \\ 3+(n-1)(5) & =2013 \\ 3+5 n-5 & =2013 \\ 5 n & =2015 \\ n & =403 \end{aligned}$
CAN YOU?	1) Given the following sequence: $3 ; 8 ; 13 ; 18 ; \ldots$ Determine: a) The general term. b) The $20^{\text {th }}$ term. c) Which term of the sequence is equal to 223 ? 2) In an arithmetic sequence, $T_{3}=-2$ and $T_{8}=23$. Determine the first term and the constant difference. 3) Find the number of terms in the arithmetic sequence $-5 ;-11 ;-17 ; \ldots ;-491$ 4) The first three terms of an arithmetic sequence are, $x-8 ; x ; 2 x-5$. Determine a) The value of x. b) The general term. c) The value of the $115^{\text {th }}$ term.	Solutions: 1) a) $T_{n}=5 n-2$ b) 98 c) $n=45$ 2) $\begin{aligned} & d=5 \\ & a=-12 \end{aligned}$ 3) 82 4) a) 13 b) $T_{n}=8 n-3$ c) 917

SERIES: A series is created by adding the terms of a sequence.

```
2; 5; 8; 11; 14;
Arithmetic Sequence
2+5+8+11+14
    Arithmetic Series
```

The Sum of a sequence is labelled as $\boldsymbol{S}_{\boldsymbol{n}}$ or the Greek symbol

$$
\sum
$$

In the series $2+5+8+11+14+\ldots$

$$
\begin{array}{ll}
\boldsymbol{S}_{\mathbf{1}}=T_{1}=2 \\
\boldsymbol{S}_{\mathbf{2}}=T_{1}+T_{2}= & \boldsymbol{S}_{\mathbf{1}}+\boldsymbol{T}_{\mathbf{2}}=2+5=7 \\
\boldsymbol{S}_{\mathbf{3}}=T_{1}+T_{2}+T_{3}= & \boldsymbol{S}_{\mathbf{2}}+\boldsymbol{T}_{\mathbf{3}}=2+5+8=15 \\
\boldsymbol{S}_{\mathbf{4}}=T_{1}+T_{2}+T_{3}+T_{4}=\boldsymbol{S}_{\mathbf{3}}+\boldsymbol{T}_{\mathbf{4}}=2+5+8+11=26 \\
\cdot & \\
\dot{\boldsymbol{S}}_{\boldsymbol{n}}=\boldsymbol{S}_{\boldsymbol{n} \mathbf{- 1}}+\boldsymbol{T}_{\boldsymbol{n}} & \boldsymbol{S}_{\boldsymbol{n}}=\boldsymbol{S}_{\boldsymbol{n} \mathbf{- 1}}+\boldsymbol{T}_{\boldsymbol{n}}
\end{array}
$$

Let $\boldsymbol{T}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}=\boldsymbol{l}$ the last term
Then

$$
\begin{aligned}
S_{n} & =a+(a+d)+(a+2 d)+\ldots+(l-d)+l \\
S_{n} & =l+(l-d)+(l-2 d)+\ldots+(a+d)+a \\
2 S_{n} & =(a+l)+(a+l)+(a+l)+\ldots+(a+l)+(a+l) \\
2 S_{n} & =n(a+l) \\
\boldsymbol{S}_{n} & =\frac{a}{2}(\boldsymbol{a}+\boldsymbol{l}) \\
S_{n} & =\frac{a}{2}(a+\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d})=\frac{n}{2}[\mathbf{a} \boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}]
\end{aligned}
$$

Hence the sum of the first \boldsymbol{n} terms of an arithmetic series is given by the formula:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { or } \quad \frac{n}{2}[a+l] ; \text { where } l, \text { is the last term }
$$

$$
\begin{aligned}
& \text { Example 6: } \\
& \qquad \text { Consider the arithmetic series }(-1)+\left(\frac{-3}{2}\right)+(-2)+\cdots+(-16) .
\end{aligned}
$$

a) Determine the number of terms in this series. \quad b) Calculate the sum of the series.

Solution:

Solution:

$$
T_{n}=a+(n-1) d
$$

$$
T_{n}=-1+(n-1)\left(-\frac{1}{2}\right)=-16
$$

$$
\begin{array}{l|l}
\therefore-1-\frac{1}{2} n+\frac{1}{2}=-16 & \therefore S_{31}=\frac{31}{2}[-1+(-16)]
\end{array}
$$

$$
\therefore-\frac{1}{2} n=-16+\frac{1}{2}
$$

$$
\therefore n=31
$$

Example 7:
How many terms of the arithmetic series $1+4+7+\cdots$ will add up to 145 ?

Solution:
$\frac{\text { Solin }}{a=1 ;} d=3 ; n=$? ; $S_{n}=145$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$145=\frac{n}{2}[2(1)+(n-1) 3]$
$\therefore S_{31}=-\frac{527}{2}$
Example 8:
Consider the arithmetic series $-4-1+2+\cdots$
Calculate the smallest value of n for which $S_{n}>300$

Solution:

$a=-4 ; d=3 ; n=$? let $S_{n}=300$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=300$
$\frac{n}{2}[2(-4)+(n-1) 3]=300$
$\therefore n[3 n-11]=600$
$290=n(2+3 n-3)$
$\therefore 3 n^{2}-11 n-600=0$
$290=n(3 n-1)$
$0=3 n^{2}-n-290$
$0=(3 n+29)(n-10)$
$n=-\frac{29}{3}$ or $n=10$
$\therefore n=10 ; n \in N$
$\therefore n=\frac{-(11) \pm \sqrt{(-11)^{2}-4(3)(-600)}}{2(3)}$
$\therefore n=16,09 \quad$ or $n=-12,43$
\therefore The smallest possible value of n is 17 .

SIGMA NOTATION: The Greek letter \sum Sigma means the sum of.
It is used to denote the sum of a set of consecutive terms of a sequence or series. In this notation we have to indicate the position of the first and

Note the two methods done above. If the sum of a set of terms of a sequence/series is for many terms say a hundred terms, it will make more sense to use the second method as you will be able to determine the sum without needing to calculate the value of all the terms and then to add them.
Example 11: Write the following series in sigma notation: $5+8+11+14+17$

Solution:

1) First calculate the general term for the series where $\boldsymbol{a}=\mathbf{5}$ and $\boldsymbol{d}=\mathbf{3}$.

Hence $T_{n}=a+(n-1) d$

$$
\begin{aligned}
& T_{n}=5+(n-1) 3 \\
& T_{n}=5+3 n-3 \\
& T_{n}=3 n+2
\end{aligned}
$$

2) Write the formula now in sigma notation

Bottom value is the first term which is equal to 5 .
$3 n+2=\mathbf{5}$

$$
3 n=3
$$

Top value is the last term which is equal to 17:

$$
3 n+2=17
$$

$$
3 n=15
$$

$$
n=1
$$

$$
n=5
$$

3)

$$
\sum_{n=1}^{5}(3 n+2)
$$

