Education

CONCEPTS AND SKILLS

Let explore this further:

1. $2 ; 8 ; 32 ; 128 ; \ldots$

$$
\begin{aligned}
& T_{1}=2=a \\
& T_{2}=2 \times 4=a r \\
& T_{3}=2 \times 4 \times 4=a r^{2} \\
& T_{4}=2 \times 4 \times 4 \times 4=a r^{3} \\
& T_{5}= \\
& \therefore T_{10}=a r^{9} \quad=a r^{4}
\end{aligned}
$$

This formula can be used to determine any term in this type of sequence.

We are going to use this rule to determine GENERAL TERM of a geometric sequence.
Example 1. Determine the general term of the sequence
2; 8; 32; 128; ...

Solution:

$$
\begin{aligned}
& T_{n}=a r^{n-1} \\
& T_{n}=2\left(4^{n-1}\right) \\
& T_{n}=2\left(2^{2}\right)^{n-1} \\
& T_{n}=2\left(2^{2 n-2}\right) \\
& T_{n}=2^{2 n-1}
\end{aligned}
$$

Some advice: Check your rule:
Eg. $T_{4}=2^{2(4)-1}=2^{7}=128$
Please note that this is NOT equal

$$
T_{n}=2\left(4^{n-1}\right) \neq 8^{n-1}
$$

Exponential laws must be applied to simplify it further.

CAN YOU?

Find the general term of each of the following sequences:
(a) $4 ; 12 ; 36 ; \ldots$
(b) $1 ;-2 ; 4 ;-8 ; \ldots$
(c) $2 ; 6 ; 18 ; \ldots$
(d) $128 ; 64 ; 32 ; \ldots$
(c) $T_{n}=2(3)^{n-1}$
(d) $T_{n}=2^{8-n}$
(e) $T_{n}=\frac{2}{3}(-3)^{n-1}$
(f) $T_{n}=(2)^{n-3}$

Example 2: Find the $7^{\text {th }}$ term of the sequence

$$
24 ; 6 ; \frac{3}{2} ; \frac{3}{8} ; \ldots .
$$

Solution:

$$
\begin{aligned}
& T_{n}=a r^{n-1} \\
& T_{7}=24\left(\frac{1}{4}\right)^{7-1} \\
& T_{7}=24\left(\frac{1}{4}\right)^{6} \\
& \mathrm{~T}_{7}=\frac{3}{512}
\end{aligned}
$$Use your calculator for the final answer!

Example 3:

Which term in the sequence:
$12 ; 4 ; \frac{4}{3}$ is equal to $\frac{4}{243}$?

Solution:

$$
\begin{aligned}
& T_{n}=a r^{n-1} \\
\frac{4}{243} & =12\left(\frac{1}{3}\right)^{n-1} \\
\frac{1}{729} & =\left(\frac{1}{3}\right)^{n-1} \\
\left(\frac{1}{3}\right)^{6} & =\left(\frac{1}{3}\right)^{n-1} \\
\therefore & n-1=6 \\
n & =7
\end{aligned}
$$

Rough work

$a=24$
$r=\frac{6}{24}=\frac{1}{4}$
$n=7$
$T_{n}=$?
Substitute

CAN YOU?

2. In the following sequences determine the:
(a) $11^{\text {th }}$ term of $-3 ; 6 ;-12 ; \ldots$
(b) $9^{\text {th }}$ term of $2 ; 8 ; 32 ; \ldots$
(c) $25^{\text {th }}$ term of $a ; a b ; a b^{2} ; \ldots$

Answer

(a) $T_{n}=-3072$
(b) $\quad T_{n}=131072$
(c) $\quad T_{n}=a b^{24}$

CAN YOU?
3. Which term of the geometric sequence $2 ; 6 ; 18$; is equal to 4374 ?
4. Find the number of terms in the sequence 2;4;8; ... 1024 .
5. How many terms are there in the sequence $5 x ; 20 x ; 80 x ; \ldots 20480 x$?

Answer

3. $n=8$
4. $n=10$
5. $n=7$

Example 4:

Determine the first 4 terms of a geometric sequence where the $2^{\text {nd }}$ term is 10 and the $9^{\text {th }}$ term is $\frac{5}{64}$.

$$
\begin{array}{cll}
T_{2}: & a r=10 & \text { Equation } 1 \\
T_{9}: & a r^{8}=\frac{5}{64} & \text { Equation } 2
\end{array}
$$

$$
\frac{E q u 2}{E q u}: \quad \frac{a r^{8}}{a r}=\frac{5}{64} \div 10
$$

$$
r^{7}=\frac{5}{64} \times \frac{1}{10}
$$

$$
r^{7}=\frac{5}{640}
$$

$$
r=\sqrt[7]{\frac{5}{640}}=\frac{1}{2}
$$

Substitute into Equation 1:

$$
\begin{aligned}
& a\left(\frac{1}{2}\right)=10 \\
& a=10 \div \frac{1}{2} \\
& a=20
\end{aligned}
$$

The three terms are:
See the confirmation of term 2.

CAN YOU?

6. Determine the geometric sequence whose $4^{\text {th }}$ term is 24 and $7^{\text {th }}$ term is 192 .

Answer

6. $r=2 ; a=3$
$3 ; 6 ; 12 ; 24 ; \ldots$

Example 5. The first 3 terms of the geometric sequence are given as:

$$
x-4 ; x ; \quad x+12
$$

(a) Determine the value of x.
(b) Determine the value of the first 3 terms
(b) Determine the value of $10^{\text {th }}$ term.

Solution:

(a)

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}} \quad[r=] \\
& \frac{x}{x-4}=\frac{x+12}{x} \\
& x^{2}=(x-4)(x+12) \\
& x^{2}=x^{2}+8 x-48 \\
& 8 x-48=0 \\
& 8 x=48 \\
& x=6
\end{aligned}
$$

(b) The terms are:

$$
\begin{aligned}
& x-4 ; x ; \quad x+12 \\
& =6-4 ; 6 ; 6+12 \\
& =2 ; 6 ; 18 \ldots .
\end{aligned}
$$

(c) $T_{n}=a r^{n-1}$

$$
\begin{aligned}
T_{10} & =2(3)^{9} \\
& =39366
\end{aligned}
$$

CAN YOU?

7. $x-4 ; x+2 ; 3 x+1 ; \ldots$ are the first three terms of a geometric sequence. Determine the sequence if x is positive.
8. $t+1 ; 1-t ; 1-5 t ; \ldots$ are the first three terms of a geometric sequence.
(a) Determine the numeric value of t where $t \neq 0$.
(b) Determine the sequence.
(c) Determine the $10^{\text {th }}$ term.
(d) Which term equals $10 \frac{2}{3}$?

Answer

7. $4 ; 10 ; 25 ; \ldots$....
8.

(a) $t=-\frac{1}{3}$
(b) $\frac{2}{3} ; \frac{4}{3} ; \frac{8}{3}$
(C) $T_{10}=\frac{1024}{3}$
(d) $n=5$

THE SUM OF A SERIES

This time we are going to determine the sum of a geometric series.
Let's see if we can find an easy way to do the following series:

$$
1+2+4+8+16
$$

This is an easy example. The sum is 31 . But what if there are 10 or more terms in a series. Let's take a closer view to observe a pattern.

$$
\begin{array}{cc}
S_{5}=1+2+4+8+16 \\
2 S_{5}= & 2+4+8+16+32 \tag{2}\\
(1)-(2): & S_{5}-2 S_{5}=1-32 \\
& -S_{5}=-31 \\
& S_{5}=31
\end{array}
$$

Now we will be doing it in general terms: [You need to know this for examination purposes]

$$
\begin{aligned}
S_{n} & =a+a r+a r^{2}+a r^{3}+\cdots a r^{n-1} \\
r S_{n} & =a r+a r^{2}+a r^{3}+\cdots \\
r S_{n}-S_{n} & =a r^{n}-a \\
S_{n}(r-1) & =a\left(r^{n}-1\right) \\
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

$a r^{n}$
囯亚 $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

Now we be using this formula to determine the sum of a geometric series.
Example 1:

Determine the sum of:

$$
1+2+4+8 \text {... . To } 6 \text { terms }
$$

Solution:

Example 2:

In the geometric series:

$$
-243-81-27 ; \ldots-\frac{1}{81}
$$

(a) Determine the number of terms.
(b) What is sum of this series?

$$
\begin{aligned}
& a=-243 \\
& r=\frac{-81}{-243}=\frac{1}{3} \\
& \mathrm{~T}_{\mathrm{n}}=-\frac{1}{81} \\
& n=?
\end{aligned}
$$

Solution: (a) $\begin{aligned} & T_{n}=a r^{n-1} \\ & -\frac{1}{81}=(-243)\left(\frac{1}{3}\right)^{n} \\ & \left(\frac{1}{3}\right)^{n}=-\frac{1}{81} \div \frac{-243}{1} \\ & \left(\frac{1}{3}\right)^{n}=-\frac{1}{81} \times-\frac{1}{243} \\ & \left(\frac{1}{3}\right)^{n}=\frac{1}{19683} \\ & \left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9} \\ & n=9 \end{aligned}$ (b) $\begin{aligned} & S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\ & S_{9}=\frac{-243\left(\left(\frac{1}{3}\right)^{9}-1\right)}{\frac{1}{3}-1} \\ & S_{9}=-\frac{9841}{27} \end{aligned}$ Remember to use the 羋 effectively! You can use the FACT [factors] function on the calculator to determine the prime factors	CAN YOU? 1. Find: (a) The number of terms in each series. (b) The sum of each series. (i) $4+12+36+\cdots+78732$ (ii) $2-8+32-\cdots-32768$ (iii) $81+27+9+\cdots+\frac{1}{27}$ Answer: (i) $n=10 ; S_{n}=118096$ (ii) $n=8 ; S_{n}=-26214$ (iii) $n=8 ; S_{n}=\frac{3280}{27}$
Example 3: Expand and then calculate: $\sum_{r=3}^{15} 3(-2)^{r-1}$ Solution: $\begin{aligned} & \begin{array}{l} \sum_{r=3}^{15} 3(-2)^{r-1}=3(-2)^{2}+3(-2)^{3}+3(-2)^{4}+\cdots+3(-2)^{14} \\ \quad=12-24+48+\cdots+49152 \end{array} \\ & S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\ & S_{13}=\frac{12\left((-2)^{13}-1\right)}{-2-1}=32772 \end{aligned}$ $\begin{gathered} a=12 \\ r=-2 \\ n=15-3+1 \\ n=13 \\ S_{n}=? \end{gathered}$	2. Find the sum of the following: (a) $\sum_{n=1}^{3} 128\left(\frac{1}{2}\right)^{n-1}$ (b) $\sum_{k=0}^{4}(-3)^{k}$ 3. What is the value of m for which $\sum_{k=1}^{m} 5(3)^{k-1}=65 ?$ Answer: 2.(a) 224 (b) -20 3. $m=3$

ACTIVITIES/ASSESSMENT

