SUBJECT and GRADE	Mathematics Grade 12	
TERM 1	Week 5	
TOPIC	Euclidean Geometry - Similarity Theorem	
AIMS OF LESSON	Equiangular triangles are similar If the corresponding sides of two triangles are in the same proportion, then the triangles are similar	
RESOURCES	Paper based resources	Digital resources
	Mind the Gap; Your textbook	https://www.youtube.com/watch?v=VZt4wXBo1PA
INTRODUCTION		
Let's go back to the previous grades and review congruency for triangles. CONGRUENCY (\equiv): Two triangles is congruent if they have the same shape and size. Thus the two triangles are identical, the corresponding angles are the same and the corresponding sides are equal. Two triangles are congruent if they have: 1. 3 sides the same length: (S; S; S) 2. 2 sides and an included angle: (S; A; S) 3. 2 angles and a side equal: (A; A; S) 4. A right angle, hypotenuse and a side equal: (R;H;S) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$: 1. $B \widehat{A} C=D \widehat{A} C$ given 2. $B \widehat{C} A=D \widehat{C} A$ given 3. AC is common 3. AC is		

Since they are congruent, we can say now that: $\widehat{B}=\widehat{D} ; \quad A B=A D$ and $B C=D C$

CONCEPTS AND SKILLS

SIMILARITY (\|\|): Polygons are similar if they have the same shape. If two polygons are similar, the one is an
enlargement of the other
Two polygons are similar if and only if:
All pairs of corresponding angles are equal AND
all pairs of corresponding sides are in the same proportion.
Both of these conditions have to be met for two polygons to be similar.

For Triangles, any one of these two conditions is sufficient to guarantee similarity.
Hence in any two triangles if:
All pairs of corresponding angles are equal, then the two triangles are similar,

OR

If all pairs of corresponding sides are in the same proportion, then the two triangles are similar.

If one of the conditions is true for two triangles, then the other condition is automatically also true.

NOTATION

$\triangle X Y Z|\mid \triangle M N P$ means 'triangle $X Y Z$ is similar to triangle $M N P$ '. The order in which the letters are written is very important, as it indicates which angles are equal.
Hence $\hat{X}=\widehat{M}, \hat{Y}=\widehat{N}$ and $\hat{Z}=\hat{P}$
The order also indicates which ratios of sides are equal: $\quad \Delta X Y Z \| \Delta \mathrm{MNP}$
$\frac{X Y}{M N}=\frac{Y Z}{N P}=\frac{X Z}{M P}$
or $\frac{X Y}{Y Z}=\frac{M N}{N P}$ or $\frac{X Y}{X Z}=\frac{M N}{M P}$
or $\frac{Y Z}{X Z}=\frac{N P}{M P}$

THEOREM 2: TRIANGLE SIMILARITY THEOREM

If two triangles are equiangular, then their corresponding sides are in the same proportion and hence the triangles are similar.

Given: $\quad \Delta \mathbf{A B C}$ and $\triangle \mathbf{D E F}$ with $\widehat{\mathbf{A}}=\widehat{\mathbf{D}}, \widehat{\mathbf{B}}=\widehat{\mathbf{E}}$ and $\widehat{\mathbf{C}}=\widehat{\mathbf{F}}$
Conclusion: $\frac{A B}{D E}=\frac{A C}{D F}=\frac{\mathbf{B C}}{\mathbf{E F}}$ and hence $\triangle \mathbf{A B C}||\mid \triangle \mathbf{D E F} . \quad$ Reason: $\angle \angle \angle$

NOTE:

If two triangles have 2 corresponding angles equal, then the third angle in each triangle will equal each other (sum angles of a triangle $=180^{\circ}$) and the triangles are therefore similar and their sides will be in proportion. The shortened reason you can use is (third angle)

If two angles are the same, then the 3 rd angle of both triangles is $180^{\circ}-\left(40^{\circ}+80^{\circ}\right)($ sum angles in $\Delta)=60^{\circ}$

Example 1:

Diameter AME of circle with centre M bisects $F \widehat{A} B$
MD is perpendicular to the chord $A B$.
ED produced meets the circle at C , and CB is joined.
a) Prove $\triangle \mathrm{AEF}||\mid \triangle \mathrm{AMD}$
b) Hence, find the numerical value of $\frac{A F}{\mathrm{AD}}$
c) Prove $\triangle \mathrm{CDB}|\mid \triangle \mathrm{ADE}$
d) Prove $\mathrm{AD}^{2}=\mathrm{CD}$. DE
[17]

Solution:

a) $\quad \hat{\mathrm{F}}=90^{\circ}$
$\widehat{D}_{1}=90^{\circ}$
(\angle in semi-circle) (given $\mathrm{MD} \perp \mathrm{AB}$)
$\therefore \hat{\mathrm{F}}=\widehat{\mathrm{D}}_{1}$
In $\triangle \mathrm{AEF}$ and $\triangle \mathrm{AMD}$

$$
\begin{aligned}
\widehat{\mathrm{F}} & =\widehat{\mathrm{D}}_{1} & & \text { (proved) } \\
\widehat{\mathrm{A}}_{1} & =\widehat{\mathrm{A}}_{2} & & (\text { AM bisects FÂB) } \\
\therefore \widehat{\mathrm{E}}_{1} & =\widehat{\mathrm{M}}_{1} & & (\text { third } \angle \text { of } \Delta) \\
\therefore \Delta \mathrm{AEF} & \text { III } \Delta \mathrm{AMD} & & (\angle \angle \angle)
\end{aligned}
$$

Highlight the triangles you working with
b) $\quad \frac{\mathrm{AE}}{\mathrm{AM}}=\frac{\mathrm{EF}}{\mathrm{MD}}=\frac{\mathrm{AF}}{\mathrm{AD}}$
(III $\Delta \mathrm{s}$)
$\mathrm{AM}=\mathrm{ME}$
(radii)
$\therefore \quad \mathrm{AE}=2 \mathrm{AM}$
$\therefore \frac{2 \mathrm{AM}}{\mathrm{AM}}=\frac{\mathrm{AF}}{\mathrm{AD}}$
$\frac{\mathrm{AF}}{\mathrm{AD}}=2$
c) In $\triangle \mathrm{CDB}$ and $\triangle \mathrm{ADE}$

$\widehat{\mathrm{C}}=\hat{A}_{2}$	$(\angle \mathrm{~s}$ in same seg)
$\widehat{\mathrm{B}}=\widehat{\mathrm{E}}_{2}$	$(\angle \mathrm{~s}$ in same seg $)$
$\widehat{\mathrm{D}}_{4}=\widehat{\mathrm{D}}_{1}+\widehat{\mathrm{D}}_{2}$	$($ vert opp. $\angle \mathrm{s}=)$

$\Delta \mathrm{CDB}||\mid \Delta \mathrm{ADE}$ (vert opp. $\angle \mathrm{s}=$)
($\angle \angle \angle)$

d) $\frac{\mathrm{CD}}{\mathrm{AD}}=\frac{\mathrm{DB}}{\mathrm{DE}}$
(III $\Delta \mathrm{s}$)
$\therefore \mathrm{CD} . \mathrm{DE}=\mathrm{AD} . \mathrm{DB}$
But $\mathrm{AD}=\mathrm{DB} \quad(\mathrm{MD} \perp \mathrm{AB}, \mathrm{M}$ is centre $)$
$\therefore \mathrm{CD} . \mathrm{DE}=\mathrm{AD} \cdot \mathrm{AD}$
$\therefore \mathrm{AD}^{2}=\mathrm{CD} . \mathrm{DE}$

CAN YOU:

1) In the sketch below, $\mathrm{AB} \| \mathrm{DE}$ and $\mathrm{AC} \| \mathrm{FE}$.

Prove that
(a) $\triangle \mathrm{BCA}\|I\| \mathrm{DFE}$
(b) AB. $\mathrm{EF}=\mathrm{AC} \cdot \mathrm{ED}$

2) In the sketch below, SR is a tangent to circle PST at S .

Prove that
(a) $\Delta \mathrm{PRS}\|\| \mathrm{SRT}$
(b) $\mathrm{RS}^{2}=\mathrm{PR}$. RT
(c) $\Delta \mathrm{PQR}\|\| \mathrm{PTS}$
(d) $\frac{\mathrm{RT}}{\mathrm{PT}}=\frac{\mathrm{RS}^{2}}{P Q \cdot P S}$

Using sides to prove that triangles are similar

CONVERSE OF THEOREM 2.

If the corresponding sides of two triangles are in the same
proportion, then the triangles are equiangular and hence similar.

Given: $\quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ with

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}
$$

Conclusion: $\widehat{\mathbf{A}}=\widehat{\mathbf{D}}, \widehat{\mathbf{B}}=\widehat{\mathbf{E}}, \widehat{\mathbf{C}}=\widehat{\mathbf{F}}$ and hence $\Delta \mathbf{A B C}\|\| \mathrm{DEF} . \quad$ Reason: sides of Δ s in prop.

Example 2:

In the sketch alongside, $\mathrm{AP}=16 \mathrm{~cm}, \quad \mathrm{~PB}=14 \mathrm{~cm}$
$A Q=20 \mathrm{~cm}, Q C=4 \mathrm{~cm}$ and $B C=27 \mathrm{~cm}$.
Prove that :
(a) $\Delta \mathrm{APQ}||\mid \Delta \mathrm{ACB}$
(b) PBCQ is a cyclic quadrilateral.

Solution:
a) $\frac{\mathrm{AP}}{\mathrm{AC}}=\frac{16 \mathrm{~cm}}{24 \mathrm{~cm}}=\frac{2}{3}$
$\frac{\mathrm{PQ}}{\mathrm{CB}}=\frac{18 \mathrm{~cm}}{27 \mathrm{~cm}}=\frac{2}{3}$
$\frac{\mathrm{AQ}}{\mathrm{AB}}=\frac{20 \mathrm{~cm}}{30 \mathrm{~cm}}=\frac{2}{3}$
(b)

$\therefore \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{PQ}}{\mathrm{CB}}=\frac{A Q}{\mathrm{AB}}$
$\therefore \Delta \mathrm{APQ}\|\| \Delta \mathrm{ACB} \quad$ (sides of $\Delta \mathrm{s}$ in prop.)

CAN YOU:
In the sketch alongside, $\mathrm{KL}=20 \mathrm{~m}, \mathrm{KN}=10 \mathrm{~m}$ $\mathrm{MN}=4 \mathrm{~m}, \quad \mathrm{KM}=8 \mathrm{~m}$ and $\mathrm{LM}=21 \mathrm{~m}$.

Prove that :
(a) $\triangle \mathrm{KMN}\|\| \Delta \mathrm{LKN}$
(b) KN is a tangent to circle LMK at K .

Identifying Triangles:

We are sometimes required to prove the equality of ratios and/or products, where the question doesn't state which triangles to prove similar.
In such cases we identify the triangles first.
Suppose, for example, you have to prove that $\frac{A B}{A C}=\frac{B C}{C D}$. There are 2 possible ways of identifying triangles in order to prove the ratios equal:

1) Top triangle, bottom triangle

If each of these pairs are sides of a triangle in the sketch, then you can proceed to try proving these triangles similar
2) Left triangle, Right triangle

If each of these pairs are sides of a triangle in the sketch, then you can proceed to try proving these triangles similar.

Example 3:

In the sketch alongside, AP is a tangent to the circle at P . $\mathrm{PN} \| \mathrm{SR}$
Prove that :
(a) $\frac{\mathrm{PS}}{\mathrm{QR}}=\frac{\mathrm{ST}}{\mathrm{RT}}$
(b) $\frac{\mathrm{PQ}}{\mathrm{PT}}=\frac{\mathrm{SR}}{\mathrm{ST}}$
(c) PM. ST $=$ RS . MT
(d) $\mathrm{AP}^{2}=\mathrm{AR} . \mathrm{AS}$

Solution:

a)

$$
\frac{\frac{\Delta \mathrm{PST} \sqrt{\mathrm{PS}}}{\mathrm{QR}}=\frac{\mathrm{ST}}{\mathrm{RT}}}{\Delta \mathrm{QRT} \sqrt{ }}
$$

Δ PST and \triangle QRT are both

 triangles in the sketch, hence we will attempt to prove that \triangle PST and $\triangle Q R T$ are similar.In $\triangle \mathrm{PST}$ and $\triangle \mathrm{QRT}$:

$$
\begin{array}{lc}
\hat{P}_{2}=\hat{Q}_{1} & (\angle \mathrm{~s} \text { in same segment }) \\
\hat{S}_{2}=\hat{R}_{1} & (\angle \mathrm{~s} \text { in same segment }) \\
\hat{T}_{1}=\widehat{T}_{3} & \left(3^{r d} \angle \text { of } \Delta\right)
\end{array}
$$

$\therefore \Delta \mathrm{PST}\|\| \Delta \mathrm{QRT}$
($\angle \angle \angle)$
(III $\Delta \mathrm{s}$)
b) $\begin{array}{ll}\triangle \mathrm{PQRS} ? ? ? \mathrm{X} \\ \mathrm{PQ} \quad \mathrm{SR} & \text { The top sides don't give a }\end{array}$ triangle in the sketch
$\triangle \mathrm{PQT}$ and $\triangle \mathrm{RST}$ are both triangles in the sketch, hence we will attempt to prove them similar.

In $\triangle \mathrm{PQT}$ and $\triangle \mathrm{RST}$:

$$
\begin{aligned}
\hat{P}_{3}+\hat{P}_{4}=\hat{S} & (\angle \mathrm{~s} \text { in same segment }) \\
\hat{Q}_{2}=\hat{R}_{2} & (\angle \mathrm{~s} \text { in same segment }) \\
\widehat{T}_{4}=\widehat{T}_{2} & \left(3^{r d} \angle \text { of } \Delta\right) \\
\therefore \Delta \mathrm{PQT}\|\| \Delta \mathrm{SRT} & (\angle \angle \angle) \longleftarrow \\
\therefore \frac{\mathrm{PQ}}{\mathrm{DT}}=\frac{\mathrm{SR}}{\mathrm{CT}} & (\text { III } \Delta \mathrm{s})
\end{aligned}
$$

(c)

$$
\frac{\frac{\Delta \mathrm{MPT} \checkmark}{\frac{\mathrm{PM}}{\mathrm{RS}}=\frac{\mathrm{MT}}{\mathrm{ST}}}}{\frac{\Delta \mathrm{RST} \downarrow}{}}
$$

In \triangle MPT and $\Delta \mathrm{RST}$:

$$
\begin{aligned}
& \hat{P}_{3}=\hat{R}_{2} \quad(\text { alt } \angle \mathrm{s} ; \mathrm{PN} \| \mathrm{SR}) \\
& \widehat{M}_{1}=\hat{S}_{3} \quad(\text { alt } \angle \mathrm{s} ; \mathrm{PN} \| \mathrm{SR}) \\
& \hat{T}_{4}=\hat{T}_{2} \quad\left(3^{r d} \angle \text { of } \Delta\right) \\
& \therefore \Delta \mathrm{PMT}\|\| \Delta \mathrm{RST} \quad(\angle \angle \angle) \\
& \therefore \frac{\mathrm{PM}}{\mathrm{RS}}=\frac{\mathrm{MT}}{\mathrm{ST}} \quad(\text { III } \Delta \mathrm{s}) \\
& \therefore \text { PM } . \mathrm{ST}=\mathrm{RS} . \mathrm{MT}
\end{aligned}
$$

Rewrite the square as a product

$$
\mathbf{A P}^{2}=\mathbf{A R} \cdot \mathbf{A S}
$$

$\therefore \mathbf{A P} . \mathbf{A P}=\mathbf{A R} . \mathbf{A S}$
$\mathrm{AP} \cdot \mathrm{AP}=\mathrm{AR} \cdot \mathrm{AS} \quad \rightarrow \frac{\mathrm{AP}}{\mathrm{AR}}=\frac{\mathrm{AS}}{\mathrm{AP}}$

$$
\frac{\Delta \mathrm{APS} \checkmark}{\frac{\mathrm{AP}}{\mathrm{AR}}=\frac{\mathrm{AS}}{\mathrm{AP}}}
$$

Prove that $\triangle \mathrm{APS}$ and $\triangle \mathrm{APR}$ are similar.

In $\triangle \mathrm{APS}$ and $\triangle \mathrm{APR}$:

$$
\begin{array}{ll}
\hat{P}_{1}=\hat{R}_{2} & (\text { tan chord thm }) \\
\hat{A}=\hat{A} & \text { (common) } \\
\hat{S}_{1}=\hat{P}_{1}+\hat{P}_{2} & \left(3^{r d} \angle \text { of } \Delta\right)
\end{array}
$$

$$
\begin{array}{l|l}
\therefore \triangle \mathrm{PAS}||\mid \triangle \mathrm{RAP} \longleftarrow(\angle \angle \angle) & \begin{array}{l}
\text { Pay attention to the } \\
\text { order of letters }
\end{array} \\
\therefore \underline{\text { PA }}=\underline{\text { AS }} &
\end{array}
$$

$\therefore \frac{\mathrm{PA}}{\mathrm{RA}}=\frac{\mathrm{AS}}{\mathrm{AP}}$
(III $\Delta \mathrm{s}$)

$$
\therefore A P^{2}=\text { AR.AS }
$$

CAN YOU:

In the sketch alongside, prove that
(a) $\frac{A B}{E D}=\frac{A P}{E P}$
(b) $\mathrm{AE} . \mathrm{CD}=\mathrm{AC} \cdot \mathrm{BD}$

Proof of Theorem 2.

If two triangles are equiangular, then their corresponding sides are in the same proportion and hence the triangles are similar.
Given: $\quad \triangle \mathbf{A B C}$ and $\triangle \mathbf{D E F}$ with $\widehat{\mathbf{A}}=\widehat{\mathbf{D}}, \widehat{\mathbf{B}}=\widehat{\mathbf{E}}$ and $\widehat{\mathbf{C}}=\widehat{\mathbf{F}}$
Required to prove $: \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$ and hence $\triangle \mathrm{ABC} \| \mid \Delta \mathrm{DEF}$
Proof:
Construction: Mark off P on AB and Q on AC , such that $\mathrm{AP}=\mathrm{DE}$ and $\mathrm{AQ}=\mathrm{DF}$. Draw PQ .
In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{DEF}$:

1. $\widehat{\mathrm{A}}=\widehat{\mathrm{D}}$
(given)
2. $\mathrm{AP}=\mathrm{DE} \quad$ (construction)
3. $\mathrm{AQ}=\mathrm{DF} \quad$ (construction)
$\therefore \triangle \mathrm{APQ} \equiv \Delta \mathrm{DEF}(\mathrm{S} ; \angle ; \mathrm{S})$
$\therefore \mathrm{A} \widehat{P Q}=\widehat{\mathrm{E}} \quad(\equiv \Delta \mathrm{s})$
And $\widehat{\mathrm{E}}=\widehat{\mathrm{B}} \quad$ (given)
$\therefore \widehat{A P Q}=\widehat{\mathrm{B}}$
$\therefore \mathrm{PQ} \| \mathrm{BC}$
(corresp $\angle \mathrm{s}=$)
$\therefore \frac{\mathrm{AB}}{\mathrm{AP}}=\frac{\mathrm{AC}}{\mathrm{AQ}}$
(line || side of Δ)

But $\mathrm{AP}=\mathrm{DE}$ and $\mathrm{AQ}=\mathrm{DF}$
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
Simarlarly, by marking of P on $B A$ and Q on $B C$, such that $B P=E D$ and $B Q=E F$, it can be shown that $\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$

