Education

SUBJECT and GRADE	Mathematics Grade 12		
TERM 1	Week 6		
TOPIC	Euclidean Geometry Pythagorean Theorem and mixed problems		
AIMS OF LESSSON	- Use similarity to prove the Theorem of Pythagoras - Apply knowledge to problems - Answer riders using a combination of theorems		
RESOURCES	Paper based resources		
	Go to this section in your textbook.		
INTRODUCTION: Up to this stage you should know the following facts:			
Theorem 1: Proportionality	If	then	
	DE \|	BC	$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
	If	then	
Theorem 2: Similarity		$\frac{\mathrm{DF}}{\mathrm{AB}}=\frac{\mathrm{FE}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}}$	

CONCEPTS AND SKILLS

We will be using the above skills to prove the following: Let's look at the following special case.

What is special in this
 case?

The perpendicular is drawn from the vertex of a right-angled triangle onto the hypotenuse

Let's see if these triangles are similar to each other

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$:
$\begin{array}{lll}\text { 1. } \mathrm{C} \widehat{\mathrm{A} B}=\mathrm{A} \widehat{\mathrm{D} B} & {\left[\text { both }=90^{\circ}\right]} \\ \text { 2. } & \widehat{\mathrm{B}}=\widehat{\mathrm{B}} & {[\text { common }]}\end{array}$
[common]
$\therefore \quad \triangle \mathrm{ABC}||\mid \triangle \mathrm{DBA} \quad[\angle, \angle, \angle]$

$$
\begin{array}{ll}
& \therefore
\end{array} \quad \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{BC}}{\mathrm{BA}}=\frac{\mathrm{AC}}{\mathrm{DA}}
$$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$:

1. $C \widehat{A} B=A \widehat{D} C \quad\left[\right.$ both $\left.=90^{\circ}\right]$
2. $\hat{\mathrm{C}}=\hat{\mathrm{C}}$ [common]
$\therefore \triangle \mathrm{ABC}\|\| \Delta \mathrm{DAC}[\angle, \angle, \angle]$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{DC}}$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{BC} . \mathrm{DC}$
$\Delta \mathrm{ABD}||\mid \mathrm{CAD}[$ Both $| | \mid \Delta \mathrm{ABC}]$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{DC}}$
$\therefore \mathrm{AD}^{2}=\mathrm{BD} . \mathrm{DC}$

Look at the patterns formed in each case.

Using the results of the above, we can prove the Theorem of Pythagoras by using similarity.	The theorem of Pythagoras: Required to prove: $\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$ Given: $\Delta \mathrm{ABC}$ with $\widehat{\mathrm{A}}=90^{\circ}$, and $\mathrm{AD} \perp \mathrm{BC}$	Proof: $\begin{aligned} & \mathrm{AB}^{2}=\mathrm{BC} . \mathrm{BD} \\ & \mathrm{AC}^{2}=\mathrm{BC} . \mathrm{CD} \end{aligned}$ $\begin{aligned} & \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC} \cdot \mathrm{BD}+\mathrm{BC} \cdot \mathrm{CD} \\ & =\mathrm{BC}(\mathrm{BD}+\mathrm{CD}) \\ & =\mathrm{BC}(\mathrm{BC}) \\ & =\mathrm{BC}^{2} \end{aligned}$				
Example 1: In $\triangle \mathrm{ABC}, \mathrm{BD} \perp \mathrm{AC}$ and $\mathrm{AB} \perp \mathrm{BC}$. Complete the following: (a) $\Delta \mathrm{ABD}\\|\\|\Delta \ldots \ldots . \quad\\| \mid \Delta \ldots \ldots$ (b) Hence complete that: $\begin{aligned} & \mathrm{AB}^{2}= \\ & \mathrm{BC}^{2}= \\ & \mathrm{BD}^{2}= \end{aligned}$ (c) If $\mathrm{DC}=6 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$, determine the length of AD (d) Hence determine the length of BC.	Solution: (a) $\Delta \mathrm{ABD}\|\|\|\Delta \mathrm{ACB} \\|\| \Delta \mathrm{BCD}$ The angles must correspond. The rightangle is at the last letter in each case. This simplifies matters! (b)	(c) Let $\mathrm{AD}=x$ units $\begin{aligned} & \mathrm{AB}^{2}=\mathrm{AD} \cdot \mathrm{AC} \\ & 16 \mathrm{~cm}^{2}=x(x+6) \\ & 36=x^{2}+6 x \\ & x^{2}+6 x-36=0 \\ & (x+8)(x-2)=0 \\ & x=-8 \text { or } x=2 \end{aligned}$ $\mathrm{AD}=2 \mathrm{~cm}$ Length cannot be negative (d) $\begin{aligned} \mathrm{BC}^{2} & =\mathrm{AC}^{2}-\mathrm{AB}^{2} \\ \mathrm{BC}^{2} & =8^{2}-4^{2} \\ \mathrm{BC} & =\sqrt{48}=4 \sqrt{3} \mathrm{~cm} \end{aligned}$				

CAN YOU?				
1. Find x and y. Solution: $\begin{aligned} & x=4 \sqrt{5} \\ & y=8 \sqrt{5} \end{aligned}$	2. In the accompanying diagram, KLMN is a kite with diagonals bisecting at P . $\hat{\mathrm{L}}=\widehat{\mathrm{N}}=90^{\circ}$ (a) Give a reason why $\Delta \operatorname{KLP}\\|\\| \Delta \mathrm{KML}$. (b) Complete the following: $\begin{aligned} & \mathrm{KL}^{2}=\ldots \ldots \ldots . \\ & \mathrm{LM}^{2}=\ldots \ldots \ldots . . \\ & \mathrm{LP}^{2}=\ldots \ldots \ldots \ldots \end{aligned}$ (c) Prove that: $\frac{\mathrm{PN}^{2}}{\mathrm{KN}^{2}}=\frac{\mathrm{MP}}{\mathrm{MK}}$ (d) Prove that: $\mathrm{KL}^{2}-\mathrm{KP}^{2}=\mathrm{KP} \times \mathrm{PM}$			

Typical examination questions:

We are now going to apply ALL our knowledge on Proportionality and Similarity to the following problems.

Example 2:

In the diagram, DE is a tangent to the circle at E and DFG is a straight line.
$\mathrm{DE}=\mathrm{EF}=\mathrm{FG}$ and $\mathrm{HF} \| \mathrm{DE}$.
It is further given that $\frac{\mathrm{DF}}{\mathrm{DE}}=y$. Let $\mathrm{D} \widehat{\mathrm{EF}}=x$.
(a) Give, with reasons, THREE other angles equal to x.
(b) Prove that:

(i)

$$
\frac{\mathrm{EH}}{\mathrm{HG}}=y
$$

(ii) $\quad \triangle \mathrm{DGE}\|\| \mathrm{DEF}$
(iii) $\mathrm{DE}^{2}=\mathrm{DF}$. DG
(iv) $\quad y^{2}+y=1$

Solution:

(a)

$\mathrm{E} \widehat{\mathrm{F} H}$	$=x$		$[$ alt. $\angle \mathrm{s} ; \mathrm{DE} \\| \mathrm{FH}]$
$\widehat{\mathrm{G}}$	$=x$		$[$ tan chord theorem $]$
$\mathrm{F} \widehat{\mathrm{EG}}$	$=\widehat{\mathrm{G}}=x$		$[\angle \mathrm{~s}$ opposite equal sides $]$

(b)
(i) $\frac{\mathrm{EH}}{\mathrm{HG}}=\frac{\mathrm{DF}}{\mathrm{FG}} \quad[$ line $/ / 1$ side of $\Delta]$ $=\frac{\mathrm{DF}}{\mathrm{DE}} \quad[\mathrm{FG}=\mathrm{DE} ;$ given $]$
$=y$
(ii) In $\triangle \mathrm{DGE}$ and $\triangle \mathrm{DEF}$:

1. $\widehat{\mathrm{D}}$ is common
2. $\widehat{\mathrm{G}}=\mathrm{D} \widehat{\mathrm{E} F}=x \quad[$ from (a) above]
$\therefore \triangle \mathrm{DGE}\|\| \mathrm{DEF} \quad[\angle, \angle, \angle]$
(iii)
$\therefore \quad \frac{\mathrm{DG}}{\mathrm{DE}}=\frac{\mathrm{GE}}{\mathrm{EF}}=\frac{\mathrm{DE}}{\mathrm{DF}}$
[$\triangle \mathrm{DGE}||\mid ~ \Delta \mathrm{DEF}$]
$\therefore \mathrm{DE}^{2}=\mathrm{DF} . \mathrm{DG}$
(iv)

$$
\begin{aligned}
\frac{\mathrm{DE}}{\mathrm{DF}} & =\frac{\mathrm{DG}}{\mathrm{DE}} & & {[\text { from (ii) }] } \\
\frac{1}{y} & =\frac{\mathrm{DF}+\mathrm{FG}}{\mathrm{DE}} & & {\left[\frac{\mathrm{DF}}{\mathrm{DE}}=y \quad \therefore \frac{D E}{D F}=\frac{1}{y}\right] } \\
& =\frac{\mathrm{DF}}{\mathrm{DE}}+\frac{\mathrm{FG}}{\mathrm{DE}} & & {[\mathrm{FG}=\mathrm{DE}] } \\
\therefore \frac{1}{y} & =\mathrm{y}+1 & & \\
\therefore y^{2}+y & =1 & &
\end{aligned}
$$

ACTIVITIES/ASSESSMENT					
Mind Action Series	Platinum	Clever	Classroom Mathematics	Siyavula	
Exercise: 8 Page: 277	Exercise: 5 Page: 224	$\begin{aligned} & \text { Exercise:11.5 } \\ & \text { Page: } 303 \end{aligned}$	$\begin{aligned} & \text { Exercise: 11.4; } 11.8 \\ & \text { Page: } 298 \end{aligned}$	$\begin{aligned} & \text { Exercise: } 8.9 \\ & \text { Page: } 351 \end{aligned}$	
CONSOLIDATION		- Know your theorems - Use different colours to highlight the given information - The proof of Pythagorean Theorem cannot be tested in the examination - The circle Geometry of Grade 11 can be integrated with these theorems.			

