

Example 1:

If M divides the line PQ in the ratio 3:4 as shown below.

Note that the ratio is NOT the length of the line. We can use variables to indicate the equal parts of the ratio. Therefore $\mathrm{PM}=3 \mathrm{k}$ and $\mathrm{MQ}=4 k$.
Determine the following ratios:

(a)	$\frac{\boldsymbol{P M}}{\boldsymbol{P Q}}=\frac{3 k}{7 k}=\frac{3}{7}$	(c)	$\boldsymbol{Q} \boldsymbol{M}$ $\boldsymbol{M P}$$=?$		
(b)	$\boldsymbol{P Q}$ $\boldsymbol{Q} \boldsymbol{M}$$\frac{7 k}{4 k}=\frac{7}{4}$				(d)
:---					
The lengths of $\mathbf{P M}$ if $\mathbf{P Q}=\mathbf{Q 5}$ units? $7 k=35$ units $k=5$ units $P M=3(5)=15$ units					
(e)					

A PROPORTION is an equation of equivalent ratio's.

Using a small measuring unit in the ratio 1:3 might not fill the glass to mix a glass of Oros. But we know that
$1: 3=4: 12$ Remember that ratio's and proportion can be written in fractional form.
$\therefore \frac{1}{3}=\frac{4}{12}$
The special Fundamental Properties of a Proportion.

wow!

CONCEPTS AND SKILLS

Important information that we need before we can prove the first theorem.
Area of Triangles
Area $=\frac{1}{2}$ base $\times \perp$ height

Note: The perpendicular height is dropped onto the base.
Therefore:
Triangles which share a common vertex have the same height.
Triangles on the same base and between the parallels are equal in area.

Area $\triangle A B C=\frac{1}{2} B C \times h$
Area $\triangle A C D=\frac{1}{2} C D \times h$

Area $\triangle A B C=\frac{1}{2} B C \times h$
Area $\triangle D B C=\frac{1}{2} B C \times h$

Construction:

Join BE and DC.
Draw height h relative to base AD and height k relative to base AE

Proof:

$\frac{\text { Area } \triangle \mathrm{ADE}}{\text { Area } \triangle \mathrm{BDE}}=\frac{\frac{1}{2} A D \times h}{\frac{1}{2} D B \times h}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\text { Area } \triangle \mathrm{ADE}}{\text { Area } \triangle \mathrm{CED}}=\frac{\frac{1}{2} A E \times k}{\frac{1}{2} E C \times k}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Area of ADE is common
Area $\Delta \mathrm{BDE}=\Delta \mathrm{CDE} \quad$ [same base DE and between //]
$\frac{\text { Area } \triangle A D E}{\text { Area } \triangle B D E}=\frac{\text { Area } \triangle A D E}{\text { Area } \triangle C D E}$
$\therefore \quad \frac{\boldsymbol{A D}}{\boldsymbol{D B}}=\frac{\boldsymbol{A E}}{\boldsymbol{E C}}$

Example 1

In $\Delta \mathrm{DEF}, \mathrm{KL} / / \mathrm{EF}$. Calculate the value of x.
Solution.
$\frac{D K}{K E}=\frac{D L}{L F}$
[prop theorem; KL || EF]

$$
\frac{5}{2}=\frac{x}{4}
$$

$2 x=20$
$x=10 \mathrm{~cm}$

CAN YOU?
Calculate the length of sides labelled x and y in the following questions.

2.

3. PMQR is a parallelogram $\mathrm{PR}=33 \mathrm{~mm}, \mathrm{QR}=14 \mathrm{~mm}$ and $\mathrm{KR}: \mathrm{RN}=3: 2$

4.

Example 3

In $\Delta \mathrm{KLM}, \mathrm{KM}\|\mathrm{DF}, \mathrm{KF}\| \mathrm{DE}$ and
$\mathrm{FE}: \mathrm{EL}=3: 4$.
Determine LE : FM.

Solution:

$\frac{\mathrm{KD}}{\mathrm{DL}}=\frac{\mathrm{MF}}{\mathrm{LF}}=\frac{\mathrm{MF}}{7 \mathrm{k}} \quad[$ prop theorem; $\mathrm{DF} \| \mathrm{KM}]$
$\therefore \frac{\mathrm{FE}}{\mathrm{EL}}=\frac{\mathrm{MF}}{\mathrm{LF}}$
$\left[\right.$ both $\left.=\frac{\mathrm{KD}}{\mathrm{DL}}\right]$
$\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{\mathrm{MF}}{7 \mathrm{k}}$
$\mathrm{MF}=\frac{21 \mathrm{k}^{2}}{4 \mathrm{k}}=\frac{21 \mathrm{k}}{4}$
$\therefore \frac{\mathrm{LE}}{\mathrm{FM}}=4 \mathrm{k} \div \frac{21 \mathrm{k}}{4}=\frac{4 \mathrm{k}}{1} \times \frac{4}{21 \mathrm{k}}$

$$
=\frac{16 \mathrm{k}}{21 \mathrm{k}}=\frac{16}{21}
$$

$\therefore \mathrm{FE}: \mathrm{FM}=16: 21$

CAN YOU?
5.

In $\triangle \mathrm{ACE}, \mathrm{BF} \| \mathrm{CE}, \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{8}$ and $\mathrm{AE}: \mathrm{ED}=4: 3$.
Determine DG: GB.

Solutions:

1. $\quad x=22$
2. $\quad x=3 ; x \neq-7$
$x=22 \mathrm{~mm} ; y=21 \mathrm{~mm}$
$x=20 ; y=18$
2:1

| Converse Theorem
 If a line cuts two sides of a triangle proportionally, then that line is parallel to the third side.
 [line divides two sides of Δ prop]
 If
 $\frac{A D}{D B}=\frac{A E}{E C}$
 then
 $D E \\| B C$ | CAN YOU?
 1. STUR is a parallelogram, with SUX, TUW and RUV straight lines. Prove RT \|| VW. | | |
|---|---|---|---|---|---|
| Example 4
 In $\triangle \mathrm{ABC}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{AD}=3 \mathrm{~cm} ; \mathrm{BE}=3,6 \mathrm{~cm}$ and $\mathrm{EC}=12 \mathrm{~cm}$.
 Prove that $\mathrm{DE} \\| \mathrm{AB}$.
 Solution: $\begin{aligned} \frac{\mathrm{BE}}{\mathrm{EC}} & =\frac{3,6}{12}=\frac{3}{10} \\ \mathrm{DC} & =13-3=10 \mathrm{~cm} \\ \therefore & \frac{A D}{D C}=\frac{3}{10} \\ \therefore & \frac{B E}{E C}=\frac{A D}{D C} \\ \therefore & D E \\| A B \quad \quad[\text { line divides two sides of } \triangle \text { prop }] \end{aligned}$ | 2.
 In the diagram ABC is a triangle with F on AB and E on AC . $\mathrm{BC} \\| \mathrm{FE}$. D is on AF with, $\frac{A D}{A F}=\frac{3}{5}, \mathrm{AE}=12$ units and $\mathrm{EC}=8$ units.
 (a) Prove that DE \|| FC.
 (b) If $\mathrm{AB}=14$ units, calculate the length of $\mathrm{BF} .[\mathbf{B F}=\mathbf{5 . 6}]$ |

