

SUBJECT and GRADE	Mathematics Grade 12							
TERM 1	Week 4							
TOPIC	Euclidean Geometry: Proportionality							
AIMS OF LESSON	• Prove the theorem that states that a line drawn parallel to one side of a triangle, divide the other two sides proportionally.							
	• Answer riders using the proportionality theorem.							
RESOURCES	Paper based resources	Digital resources						
	Mind the Gap; Your textbook	https://www.youtube.com/watch?cdlW3jwTj1Ag						
INTRODUCTION								
We need to revise the concept of ratio and proportion in order to be successful with this section of the work.								
We know that a ratio compares 2 quantities of the same unit.								
E.g. 1:3 means 1 part to 3 parts								
Mixing Oros: To make a perfect drink we need 1 part of Oros and 3 parts of water.								
Remember that the unit must be the same.								
Example 1:								
If M divides the line PQ in the ratio 3:4 as shown below.								
P M Q								
	7 parts							
Note that the ratio is NOT the length of the line. We can use variables to indicate the equal parts of the ratio. Therefore $PM = 3k$ and $MQ = 4k$.								
Determine the following ratios:								

(a)	$\frac{PM}{PQ} = \frac{3k}{7k} = \frac{3}{7}$		(c)	$\frac{QM}{MP} = ?$			
(b)	$\frac{PQ}{QM} = \frac{7k}{4k} = \frac{7}{4}$		(d)	$\frac{QP}{PM} = ?$			
(e)	The lengths of PM if PQ = 35 units?		(f)	The lengths of MQ if PQ = 35 units?			
	7k = 35 units			$MQ = 4(5) = 20 \ units$			
	k = 5 units			or $MQ = 35 - 15 = 20$ units			
	$PM = 3(5) = 15 \ units$						
A PROPORT	ION is an equation of equiv	valent ratio'	s.				
Using a small measuring unit in the ratio 1: 3 might not fill the glass to mix a glass of Oros. But we know that							
1:3 = 4:12 Remember that ratio's and proportion can be written in fractional form.							
$\therefore \frac{1}{3} = \frac{4}{12}$							
The special Fu	ndamental Properties of a F	Proportion.					
Pour Now			ad = bc		$3 \times 4 = 1 \times 12$ Cross multiplication		
	$\frac{a}{b} = \frac{c}{d}$ $\frac{1}{3} = \frac{4}{12}$	then	$\frac{b}{a} = \frac{d}{c}$		$\frac{3}{1} = \frac{12}{4}$ Inverted		
			$\frac{a+b}{b} = \frac{c+d}{d}$		$\frac{1+3}{3} = \frac{4+12}{12} \div \frac{4}{3} = \frac{16}{12}$	wow!	
			$\frac{a}{c} = \frac{b}{d}$		$\frac{1}{4} = \frac{3}{12}$		Handy tools!
			$\frac{a-b}{b} = \frac{c-d}{d}$		$-\frac{2}{3} = -\frac{8}{12}$		

CONCEPTS AND SKILLS

Important information that we need before we can prove the first theorem.

Area of Triangles

Area =
$$\frac{1}{2}$$
 base $\times \perp$ height

Note: The perpendicular height is dropped onto the base.

Therefore:

Triangles which share a common vertex have the same height.

Triangles on the same base and between the parallels are equal in area.

