

Western Cape Government

Education

SUBJECT and GRADE	PHYSICAL SCIENCES GRADE 10		
TERM 1	WEEK 7		
TOPIC	CHEMICAL BONDING		
AIMS OF LESSON	To reiterate the concept of Chemical Bonding and the different types completed last week		
	To introduce the concept of Metallic Bonding		
RESOURCES	Paper based resources	Digital resources	
	Refer to your textbook, find the relevant		
	sections of the work, work through the notes	Use the links to watch the following videos:	
	and examples and complete the activities	What are metallic bonds/Properties of	
	listed at the end of each section.	matter/Chemistry/Fuse School -	
		https://www.youtube.com/watch?v=S08qdOTd0w0	
		Chemical Bonding -	
		https://www.youtube.com/watch?v=1DWZFkipYtE	
		How to calculate Molar Mass Practice problems -	
		https://www.youtube.com/watch?v=Qflq48Foh2w	
INTRODUCTION	From your previous lesson, you have learnt the following:		
	Covalent bond – sharing of electrons between two non-metal atoms to form a molecule		
	lonic bond - the transfer of electrons from a metal atom to a non-metal atom to form cations (positive ions)		
	and anions (negative ions) that attract each other to form a formula-unit		
	Lewis diagram - a structural formula in which valence electrons are represented by dots or crosses. It is also		
	known as an electron dot formula, a Lewis formula, or an electron diagram.		

CONCEPTS AND SKILLS	PART 1: CHEMICAL BONDING CONTINUED	CAN YOU?
	 METALLIC BONDING: occurs as the bond between positive ions and delocalised valence electrons in a metal. Valence electrons or outer electrons are the electrons in the highest energy level of an atom in which there are electrons. Example 1: Metallic bonding in Sodium (Na) 	 Identify the type of bonding between atoms by identifying the atoms in each molecule/crystal lattice? Explain metallic bonding? Explain metallic bonding by using diagrams? Compare metals with their properties? Differentiate between molecules and crystal lattices? Calculate the Mr of molecular and ionic substances? CAN YOU? Identify the different types of charges (in terms of electrostatics)? Explain the concept of tribo-electric charging? Predict, using the tribo-electric series which substance will lose electrons during contact and rubbing together? Predict, using the tribo-electric series which substance will receive electrons during contact and rubbing together?

Materilia hands are used to evolate the preparties of materia
Merallic bonds are used to explain the properties of metals:
Properties:
Conduction of heat and electricity: The free-moving valence electrons act as carriers of heat and electricity.
 Malleability and ductility: If you hit a piece of metal with a hammer, the positive ions shift over each other, but the delocalised valence electrons move between them and prevent the positive ions from getting too close and then repelling each other. This stops the metal from breaking. High density: Metal ions can be packed very close together because electrons are very small.
Metallic lustre: Valence electrons are free and do not belong to one specific atom. These free
electrons can absorb and give back light of any frequency. Metals thus gleam in any light.
<u>PART 2</u>
CALCULATING RELATIVE MOLECULAR MASS (of molecules)
Remember that during covalent bonding, molecules are formed. Did you know that the atoms combine in fixed ratios, for example H ₂ O is the formula for water and it combines in the ratio 2:1 (2 Hydrogen atoms: 1 oxygen atom)?
To calculate the molecular mass (Mr) for molecules:
1. Multiply the atomic mass of each atom by the number of those atoms in the molecule
2. Add all the masses together
<u>Worked example 1</u> : Calculating the M_r of CO ₂ .
Solution: $M_r (CO_2) = 12 + [16 \times 2] = 44g$
<u>Worked example 2</u> : Calculating the M_r of H_2O .
Solution: M_r (H ₂ O) = [1 x 2] + 16 = 18g
Worked example 3: Calculating the Mr of SO3.
Solution: M_r (SO ₃) = 32 + [16 x 3] = 80g

CALCULATING	RELATIVE FORMULA MASS (of ionic crystal lattices)
Remember du simplest ratio i	ring ionic bonding, crystal lattices are formed. The formulae of the crystal lattices indicate n which the ions combine.
It is calculated	I in the same manner as the Molecular mass explained above.
Worked exam	ple 4: Calculating the Mr of NaCl.
Solution: Mr (N	aCl) = 23 + 35,5 = 58,5g
Worked exam	ple 5: Calculating the M_r of CaF ₂ .
Solution: Mr (C	aF_2) = 40 + [19 x 2] = 78g
Worked exam	ple 6: Calculating the M_r of NaHCO ₃ .
Solution: Mr (N	$aHCO_3$) = 23 + 1 + 12 + [16 x 3] = 84g
PART 3: ELECT	ROSTATICS
Electrostatics (MOVING).	or static electricity) has to do with the interactions of charges that are mainly stationary (NC
All materials c	onsist of very small particles called atoms. e of each atom is a nucleus that consists of neutrons that have no charge and protons that
• Outside the same size as the	e charge. nucleus are much smaller particles called electrons . They carry a negative charge that is the ne positive charge of the protons.

Table 1: The	Tribo-electric series	
Substances h	nigher in the table tend to become posi	tively charged.
	POSITIVE END OF SERIES	
	Human hand	
	Glass	
	Human hair	
	Nylon (e.g. stockings)	
	Wool	
	Silk	
	Paper	
	Cotton	
	Steel	
	Wood	
	Rubber balloon	
	Copper, brass	
	Sulfur	
	Acetate	
	Polyester	
Pol	yethylene (e.g. plastic bags)	
Poly	propylene (e.g. plastic chairs)	
Polyvinylchlo	ride (PVC) (e.g. insulation for electrical	
	cables)	
	Teflon	
	NEGATIVE END OF SERIES	
<u>Example</u> :		
A piece of pap	<u>per</u> rubbed on <u>glass</u> becomes negative l	y charged but if the <u>paper</u> is rubbed on a <u>rubber</u>
balloon, the po	aper becomes positively charged . Refe	r to the table above.
The substance	that loses electrons becomes positive a	nd the other one substance becomes negative.

ACTIVITIES/ASSESSMENT	ACTIVITY 1:
	1. Identify the types of chemical banding in each of the following below
	Hint – determine the type of elements and therefore atoms first
	1.1 NaCl
	1.2 H ₂ O
	1.3 MgO
	1.4 Fe
	1.5 CO ₂
	2. Fill in the missing word/s to complete the statements.
	2.1 Ionic bonds are formed when the electron is transferred from a atom to a atom.
	2.2 Merallic solids are made up of one element.
	2.4 When an atom loses an electron, or receives an electron, it becomes an
	2.5 Metals have high density because the metal are packed
	3. Calculate the Mr of:
	$3.1 \text{ N}_2\text{O}_4$
	$3.4 H_2 SO_4$
	3.5 KMnO ₄

	ACTIVITY 2:
	1. Write the definitions for the following:
	1.1 electrically neutral 1.2 net charge
	1.3 like charges 1.4 tribo-electric charging
	2. When you rub plastic and wool together,
	2.1 which particles are transferred from one substance to another?
	2.2 which substance will lose electrons and become positively charged?
	2.3 which substance will receive electrons and become negatively charged?
CONSOLIDATION	 Ensure that you understand, are able to identify and describe the different types of chemical bonding Link the properties of metals to how metallic bonds are formed
	Remember how to calculate the molecular/formula mass of molecules/crystal lattices
	 Understand the two types of charges and what electrostatics is about
	 Predict the charges on substances when they are in contact, and then rubbed together
	 Refer to your textbook, find these sections of work and complete the activities listed
	 Good luck with the lesson and do not forget to ask your teacher for support if you need it!
VALUES	ATTENTIVENESS
	INDEPENDENCE