

SUBJECT and GRADE	MATHEMATICS GR 11					
TERM 2	Week 4					
TOPIC	FUNCTIONS					
AIMS OF LESSON	Sketching the graphs of a parabolic-, hyperbolical- and exponential function.					
	Introducing the Parabola equations in turning point form and standard form.					
	 Use concepts of shape, turning point, axes of symmetry, intercepts and asymptotes as they relate to the graphs. 					
RESOURCES	Paper based resources	Digital resources				
	Please go to the Functions section in	Parabola: https://bit.ly/2KMluwW; https://bit.ly/2ycgLTF; https://bit.ly/3eWbfFk				
	your Mathematics Textbook.	Hyperbola: https://bit.ly/3aQokg4; https://bit.ly/3aOhEiz; https://bit.ly/3bSa8Va				
		Exponential: https://bit.ly/2KLNBxq				
INTRODUCTION	<i>y</i> ↑					
In Grade 10 you have learnt to	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y	y			
sketch graphs of the form:	\		h			
$y=ax^2+q$, $y=rac{a}{x}+q$ and		y = 4				
$y=a.b^x+$	-3 3 x	<u> </u>				
Have an some examples of another		$\left(-\frac{9}{4};0\right)$	(1; 0) x			
Here are some examples of graphs sketched in GR10.	C (0; 9)	9	(0;-1) $y = -2$			
	2	, i	l '			
• Standard form	$y = ax^2 + q$	$y = \frac{a}{r} + q$	$y=a.b^x+q$			
• Equation for this example	$f(x) = x^2 - 9$	g(x) = -+4	$h(x) = 2^x - 2$			
	· ·	$\frac{g(x)-x}{(9)}$	` ,			
• x -intercepts $(y = 0)$	(-3;0) and $(3;0)$	$\left(-\frac{9}{4};0\right)$	(1;0)			
• y –intercept $(x = 0)$	(0;9)	none	(0;-1)			
• Asymptotes		horisontal asymptote $y = 4$	horisontal asymptote $y = -2$			
		vertical asymptote $x = 0$				
• Other	$a > 0 \rightarrow \text{arms up}$	$k > 0 \rightarrow$	$b > 1 \rightarrow \text{graph is increasing}$			
		graph in 1st and 3rd quadrant				

CONCEPTS AND SKILLS

In this lesson we are going onto sketching the same graphs, but we will include an extra parameter p.

(1) PARABOLA

 $y = a(x + p)^2 + q$, $y = \frac{k}{x+p} + q$ and $y = a.b^{x+p} + q$

We will discover that this variable will translate (move) the graphs left or right.

HOW TO SKETCH THE GRAPH: $y = a(x + p)^2 + q$

There are THREE concepts that the examiner will award marks for:

- Turning point
- *x* –intercepts
- y intercept

EXAMPLE 1

1.1 Draw the sketch $f(x) = (x - 1)^2 - 4$

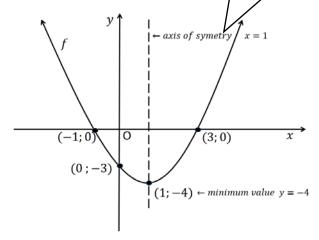
Clearly show all intercepts with the axes and the coordinates of the turning point.

It is always a good idea to indicate the axis of symmetry with a broken line

ANSWER:

- $a > 0 \rightarrow \text{arms up}$
- TP (1; -4)
- x -intercepts (y = 0)

$$0 = (x - 1)^2 - 4$$


$$0 = x^2 - 2x + 1 - 4$$

$$0 = x^2 - 2x - 3$$

$$0 = (x-3)(x+1)$$

$$\therefore x = 3 \; ; \; x = -1$$

• y - intercept (x = 0) $y = (0 - 1)^2 - 4$ y = -3

1.2 Does this graph have a minimum or a maximum value? Give the value.

ANSWER:

Minimum value of y is -4

NOTE:

f(x) -notation:

To distinguish between different graphs, we can name them with letters of the alphabet. For this reason, we use f(x), g(x), h(x) etc. in the place of the y -value.

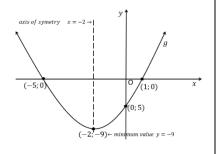
CAN YOU?

- 1) Draw the sketch $g(x) = (x + 2)^2 9$ Clearly show all intercepts with the axes and the coordinates of the turning point.
- 2) Does this graph have a minimum or a maximum value? Give the value.
- 3) Give the equation for the axis of symmetry.

ANSWER:

1)

$$x$$
 –intercepts ($y = 0$)


$$0 = (x+2)^2 - 9$$

$$0 = x^2 + 4x + 4 - 9$$

$$0 = x^2 + 4x - 5$$

$$0 = (x+5)(x-1)$$

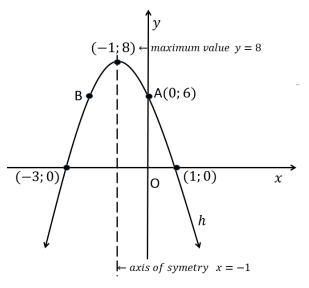
$$x = -5$$
; $x = 1$

- 2) minimum value of y is -9
- 3) x = -2

EXAMPLE 2

2.1 Draw the sketch $h(x) = -2(x+1)^2 + 8$ Clearly show all intercepts with the axes and the turning point. NOTE:

The -2 will
NOT influence
the coordinates
of the turning
point


ANSWER:

- $a < 0 \rightarrow \text{arms down}$
- TP (-1; 8)
- x -intercept (y = 0)• $0 = -2(x + 1)^2 + 8$ • $0 = -2(x^2 + 2x + 1) + 8$ • $0 = -2x^2 - 4x - 2 + 8$ • $0 = -2x^2 - 4x + 6$
 - 0 = 2x 1x + 0 $0 = -2(x^2 + 2x 3)$

$$0 = -2(x+3)(x-1)$$

$$\therefore x = -3 \; ; \; x = 1$$

• y - intercept (x = 0) $y = -2(0 + 1)^2 + 8$ y = 6

Symmetry in sketch:

2.2 Give the coordinates of B, if B is the reflections of A(0; 6) around the axes of symmetry.

ANSWER:

B(-2;6)

CAN YOU?

- 4) Draw the sketch $k(x) = 2(x-2)^2 8$ Clearly show all intercepts with the axes and the coordinates of the turning point.
- 5) Give the coordinates of C, if C is the reflections of D(1; -6) around the axes of symmetry.

ANSWER:

4)

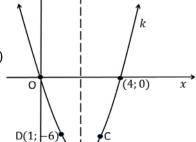
- $a > 0 \rightarrow \text{arms up}$
- TP (2; -8)
- x -intercept (y = 0)

$$\mathbf{0} = 2(x-2)^2 - 8$$

$$0 = 2(x^2 - 4x + 4) - 8$$

$$0 = 2x^2 - 8x + 8 - 8$$

$$0 = 2x^2 - 8x$$


$$0 = 2x(x-4)$$

$$\therefore x = 0 \; ; \; x = 4$$

• y - intercept (x = 0) $y = 2(0 - 2)^2 - 8$

$$y = 0$$

5) C(3; -6)

|x| = 2

NOTE:

This equation is in standard form.

We cannot "see" the turning point in this form.

We must use the following formula to get the symmetry axis:

$$x = \frac{-b}{2a}$$

EXAMPLE 3

3.1 Draw the sketch $f(x) = -2x^2 - 4x + 6$ Clearly show all intercepts with the axis and the turning point.

ANSWER:

- $a < 0 \rightarrow \text{arms down}$
- TP

$$x = \frac{-b}{2a}$$

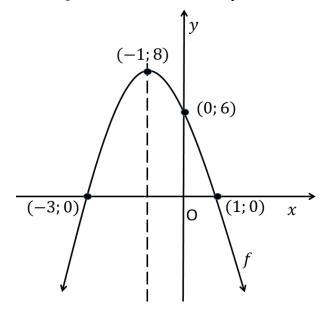
$$x = \frac{-(-4)}{2(-2)}$$

$$x = -1$$

Substitute this value into the ORIGINAL EQUATION to calculate the y –coordinate.

$$f(-1) = -2(-1)^2 - 4(-1) + 6$$

$$f(-1) = 8$$


Turning Point (-1; 8)

• x -intercepts (y = 0)• $0 = -2x^2 - 4x + 6$ • $0 = -2(x^2 + 2x - 3)$

$$0 = -2(x^2 + 2x - 3)$$
$$0 = -2(x + 3)(x - 1)$$

$$\therefore x = -3 : x = 1$$

•
$$y - \text{intercept} (x = 0)$$

 $y = -2(0)^2 - 4(0) + 6$
 $y = 6$

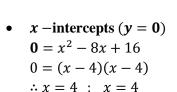
Directorate: Curriculum FET

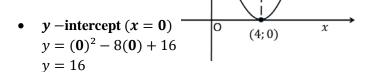
CAN YOU?

6) Draw the sketch $g(x) = x^2 - 8x + 16$ Clearly show all intercepts with the axis and the coordinates of the turning point

ANSWER:

- $a > 0 \rightarrow \text{arms up}$
- TP


$$x = \frac{-b}{2a} = \frac{-(-8)}{2(1)}$$


$$x = 4$$

$$f(4) = (4)^2 - 8(4) + 16$$

$$f(4) = 0$$

TP (4; 0)

(0; 16)

CONCEPTS AND SKILLS

(2) HYPERBOLA

$y = \frac{a}{x+p} + q$ HOW TO SKETCH THE GRAPH:

There are THREE concepts that the examiner will award marks for:

- Horisontal and vertical asymptotes.
- x –intercept
- y intercept

EXAMPLE 4

4.1) Sketch the graph of $h(x) = \frac{8}{x+1} - 4$ clearly show all asymptotes and the intercepts with the axes.

ANSWER:

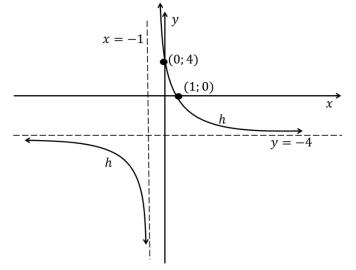
- Horisontal asymptote: y = -4 and vertical asymptotes: x = -1
- x -intercept (y = 0)

$$\mathbf{0} = \frac{8}{x+1} - 4$$

$$4 = \frac{8}{x+1}$$

$$4(x+1)=8$$

$$4x + 4 = 8$$


$$4x = 4$$

$$x = 1$$

• y - intercept

$$y = \frac{8}{\mathbf{0} + 1} - 4$$

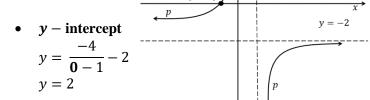
CAN YOU?

7) Sketch the graph of $p(x) = \frac{-4}{x-1} - 2$ clearly show all asymptotes and the intercepts with the axes.

ANSWER:

- Horisontal asymptote: y = -2
- vertical asymptote: x = 1
- x -intercept (y = 0)

$$0 = \frac{-4}{x-1} - 2$$


$$2 = \frac{-4}{x - 1}$$

$$2(x-1) = -4$$

$$2x - 2 = -4$$

$$2x = -2$$

$$x = -1$$

CONCEPTS AND SKILLS

(2) EXPONENTIAL GRAPH

$y = a.b^{x+p} + a$ HOW TO SKETCH THE GRAPH:

There are THREE concepts that the examiner will award marks for:

- Horisontal asymptote.
- *x* –intercept
- y intercept

EXAMPLE 5

5.1) Sketch the graph of $k(x) = 2^{x-1} - 4$ clearly show all asymptote(s) and the intercepts with the axes.

ANSWER:

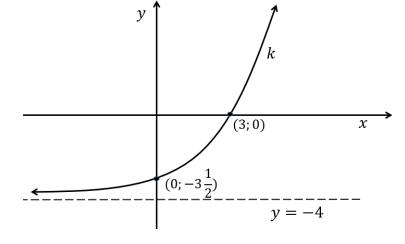
- Horisontal asymptote: y = -4
- x -intercept (y = 0)

$$\mathbf{0} = 2^{x-1} - 4$$

$$4 = 2^{x-1}$$

$$2^2 = 2^{x-1}$$

$$2 = x - 1$$


$$3 = x$$

• y - intercept

$$y = 2^{0-1} - 4$$

$$y = \frac{1}{2} - 4$$

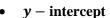
$$y = -3\frac{1}{2}$$

CAN YOU?

8) Sketch the graph of $f(x) = 3^{x+1} - 9$ clearly show all asymptotes and the intercepts with the axes.

ANSWER:

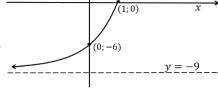
- Horisontal asymptote: y = -9
- x -intercept (y = 0)


$$\mathbf{0} = 3^{x+1} - 9$$

$$9 = 3^{x+1}$$

$$3^2 = 3^{x+1}$$

$$2 = x + 1$$


$$1 = x$$

$$y = 3^{0+1} - 9$$

$$y = 3 - 9$$

$$y = -6$$

9) Give the equation for g if g is the graph after f has moved 6 units up and 1 unit to the left.

ANSWER:

$$g(x) = 3^{x+2} - 3$$

HOW TO SKETCH THE GRAPH: $y = a. b^{x+p} + q$

EXAMPLE 6

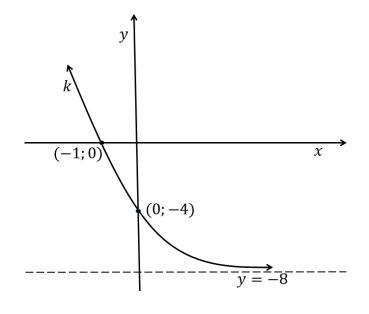
6.1) Sketch the graph of $k(x) = \frac{1}{2}^{x-2} - 8$ clearly show all asymptote(s) and the intercepts with the axes.

ANSWER:

- Horisontal asymptote: y = -8
- x -intercept (y = 0)

$$\mathbf{0} = \frac{1}{2}^{x-2} - 8$$
$$8 = (2^{-1})^{x-2}$$

$$2^3 = 2^{-x+2}$$
$$3 = -x + 2$$


$$x = -1$$

•
$$y - intercept$$

$$y = \frac{1}{2}^{0-2} - 8$$

$$y = 4 - 8$$

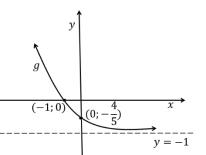
$$y = -4$$

CAN YOU?

10) Sketch the graph of $g(x) = \frac{1}{5}^{x+1} - 1$ clearly show all asymptotes and the intercepts with the axes.

ANSWER:

- Horisontal asymptote: y = -1
- x -intercept (y = 0)


$$\mathbf{0} = \frac{1}{5}^{x+1} - 1$$

$$1 = \frac{1}{5}^{x+1}$$

$$5^{0} = (5^{-1})^{x+1}$$

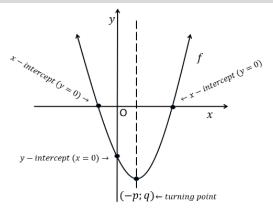
$$0 = -x - 1$$

$$x = -1$$

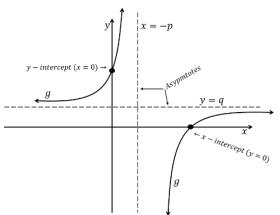
- y intercept $y = \frac{1}{5}^{0+1} 1$ $y = -\frac{4}{5}$
- **11)** Give the equation for *h* if *h* is the graph after *f* has moved 1 units up and 1 unit to the right.

ANSWER:

$$h(x) = \frac{1}{5}^x$$


ACTIVITIES/ASSESSMENT

- VIA AFRICA *p* 52 − 56 *Question* 1 − 9
- MIND ACTION SERIES Exercise 1 6 p 87 114
- SIYAVULA Exercise 5 4p154; Exercise 5 5p155 and Exercise 5 6p161
- PLATINUM Exercise 3 p 86; Exercise 4 p 89 en Exercise 7 p 97


CONSOLIDATION

$PARABOLA \quad y = a(x+p)^2 + q$

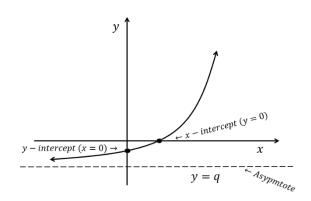
- x intercept (y = 0) & y intercept (x = 0)
- Parabola: Turning point (-p; q)

HYPERBOLA $y = \frac{a}{x+p} + q$

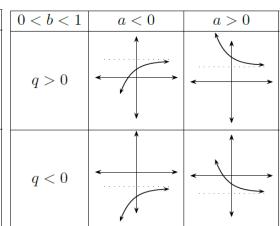
- x intercept(y = 0) & y intercept(x = 0)
- Asymptotes x = -p and y = q

	p > 0		p < 0	
	a < 0	a > 0	a < 0	a > 0
q > 0				
q < 0				

www.everythingmaths.co.za

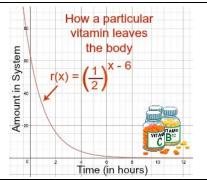

	p > 0		p < 0	
	a < 0	a > 0	a < 0	a > 0
q > 0				
q < 0				

www.everythingmaths.co.za


ESPONENTIAL GRAPH:

$$y = a. b^{x+p} + q$$

- x intercept (y = 0) & y intercept (x = 0)
- Asymptote y = q



www.everythingmaths.co.za

VALUES:

Concepts/skills in real life scenarios

 $\underline{\text{http://passyworldofmathematics.com/sydney-harbour-bridge-mathematics/}}$

 $\underline{https://study.com/academy/lesson/modeling-the-real-world-with-families-of-functions.html}$